Cooperative Multi-Robot Control for Target Tracking
with Efficient Switching of Onboard Sensing Topologies

Karol Hausman  Jorg Miiller

I. INTRODUCTION

Using multiple robots to track a moving target is po-
tentially beneficial because of the reduction in tracking
uncertainty, increased coverage, and robustness to failure.
Two problems arise immediately. First, these objectives are
often at odds (e.g., the configuration of the robots that lead
to the lowest uncertainty estimates of target pose may not
be the best if one or more robots is disabled). Second, the
robots themselves are often poorly localized (e.g., only a few
may have access to GPS, and the rest may be limited to a
combination of onboard inertial sensing, visual odometry,
and relative range/bearing measurements to estimate their
poses relative to each other).

In the domain of cooperative control, small unmanned
aerial vehicles (UAVs) have recently become prominent in
multi-robot control with motion capture state estimates [} 7].
For cooperative target tracking with onboard sensors, re-
searchers considered centralized [3l], decentralized [1]], and
distributed [4] approaches to multi-robot control in aerial
and ground settings. However, these methods estimate the
pose of the target and assume that the poses of the robots
are known, e.g., from an external system or by reference to
a global map. To robustly perform cooperative multi-robot
localization using only onboard sensors, optimization-based
maximum-likelihood localization approaches have been pro-
posed [2]]. However, it does not allow for direct minimization
of the uncertainty associated with the estimated target pose.

In this paper, we consider the cooperative control of a team
of robots to estimate the position and minimize the position
uncertainty of a target using onboard sensing. In particular,
we assume limited sensing capabilities and reason over the
entire sensing topology by explicitly estimating the joint state
of the robots and target.

II. MULTI-ROBOT CONTROL WITH TOPOLOGY
SWITCHING

1) Sensing Topologies: At each time step, the team of
robots is in a certain topology with respect to sensing. In our
multi-robot control method, we efficiently organize sensing
topologies by applying a level-based approach. Each robot is
assigned to a level, the global sensor is in the highest level,
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and the target is in the lowest level (see Fig. [I)). Each sensor
can potentially observe each robot/target in the adjacent layer
below it given that its capabilities allow the corresponding
measurements in the spacial configuration.

During target tracking, we allow switching between neigh-
boring topologies. We consider two sensing topologies as
neighbors, if the team can transition between them by just
moving one robot by one level up or down (which can result
in adding or removing a level).

2) Extended Kalman Filter (EKF) State Estimation: We
use the popular EKF to efficiently and robustly estimate
the joint pose of all robots and the target from imprecise
movements and noisy measurements similar to [6]. The
motion and sensing functions, their Jacobians, and the noise
covariances are provided by the motion and sensor model of
each entity, respectively.

3) Optimization-based Control: We formulate the selec-
tion of controls as an optimization problem with the cost
function at time step k:
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It penalizes the uncertainty of the state estimate of the target
in terms of the trace of the marginal ¥’ of the covariance
3 of the joint EKF, given the control u is applied for h
time steps in the EKF, where 0 < v < 1 is a discount
factor. In our approach, we apply nonlinear optimization to
find the locally optimal control uj = argmin,, c¢;(u) for the
current topology and all neighbor topologies. We then select
the topology and corresponding control that resulted in the
lowest cost.

The asymptotic complexity of our approach with n robots
is O(n®), since each EKF evaluation has cubic complexity
and is nested in the optimization and the evaluation of
neighboring topologies, which both have linear complexity.

III. EXPERIMENTS
A. Simulations

We evaluated our approach on a number of simulations.
We consider robots and a target as points moving in 2D
space, and we employ the Kalman filter to estimate their
positions. The global sensor (called GPS) is located at the
origin [0,0]. All sensors provide omnidirectional relative
position measurements with a range of 0.5 m.

An example of the simulation results is shown in Fig. [T}
a video is available onlind'] While the controls selected by

Uhttp://robotics.usc.edu/~hausmankarol/videos/iser_videos
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Fig. 1. Simulation results with 5 robots. Left: the current topology selected
by our approach. The links represent the actual measurements where the
thickness of each link corresponds to the information provided by the
measurement. Right: The trajectory and the state estimates of the EKF.
The actual trajectory is shown as thick dots connected by a solid line. The
EKF means are indicated by ‘+’ and the covariance is shown for the current
state.

the approach were quite smooth, the zigzag movements of
the robots were due to the simulated motion noise. Each
experiment started in one of the simplest topologies, in which
the robots were arranged as a string, each residing on its own
level. Our approach locally modified the topology during
the first steps and converged to a topology with two levels
(Fig. 1l row 1). As the target moved away from the GPS
signal, the limited measurement range causes dropouts (row
2) and our approach introduced an additional robot level
(row 3). Further simulations with 2 to 30 robots and different
sensor models confirmed that the selected topologies depend
on the limitations of the sensor model.

B. Real Robot Experiments

We implemented and tested the approach on Parrot
AR.Drone quadrotor UAVs shown in Fig. 2] The setup
consists of a camera at the ceiling as a global sensor, and
a TurtleBot 2 as a moving target on the ground. Each
AR.Drone is equipped with an inertial measurement unit
(IMU), an ultrasound altimeter, two cameras, and WiFi
communication. The down-looking camera is used internally
to estimate the visual odometry, which is fused with the IMU
and altitude information of the quadrotor. We modified the
forward-looking camera to be tilted 45° downwards to track
other robots and the target, all equipped with checkerboard
markers for relative pose estimates.

We conducted a series of real robot experiments as a proof
of concept of our approach; the videos are available online'.
Fig. [2] shows two robots that are tracking the target and are
currently in the string topology where each robot resides on
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Fig. 2. Two AR.Drones tracking the target — currently in a string topology.
The state estimates are shown as blue arrows, the corresponding covariances
are represented by blue ellipses. The commanded velocities are shown as
orange arrows.

its own level. Although the target went temporarily out of
the robot’s field of view, the system was able to recover and
continue tracking.

IV. CONCLUSIONS

We presented a probabilistic multi-robot control approach
that considers onboard sensing and topology switching for
target tracking. Our method generates locally optimal control
while keeping polynomial complexity. We evaluated our
approach in a number of simulations and showed exper-
iments with inexpensive quadrotor robots as a proof of
concept. Our approach proved to flexibly adapt the topology
and controls to the sensing limitations of the individual
robots and the target movements. At present, we restrict this
search using a neighbor heuristic. In the future, we plan to
further explore principled topology switching techniques that
preserve scalability.
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