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I. INTRODUCTION

Sensor network localization is a problem which arises
in many circumstances when sensors are deployed in an
environment. We focus specifically on the case when sensors
are able to take bearing measurements and cannot measure
distances. This problem occurs, for example, in robotic
networks [1]: if each robot is equipped with a set of antennae,
it may be able to tell which direction another robot is
located with respect to itself but not how far away it is.
This problem is also seen in camera networks since standard
cameras can only determine the relative bearings between
points, but not depth. A related problem arises in computer
vision as the “structure from motion” problem, where camera
measurements of points in the world are used to reconstruct
the network consisting of both points and cameras [2], [3].

We investigate the circumstances under which a network
can be localized from only such bearing measurements. We
consider the problem under two different situations. In the
first — shown in Figure la — all nodes in the network have
access to a global coordinate frame. In this case, we review
previous results on localization. In addition, we present a
method for identifying maximal rigid components of the
network.

In the second case — depicted in Figure 1b — no global
coordinate frame is available and nodes are only able to make
relative bearing measurements. For this case, localization
is more difficult. We propose a “triangular” constraint for
this situation that is linear and allows for exact solutions
to triangulated networks. We then extend this constraint
to general networks and propose two efficient optimization
procedures. This approach can also be extended to 3D
networks under certain circumstances, and we evaluate our
approach on several datasets to show its applicability.

II. WITH A GLOBAL COORDINATE FRAME

Given a network of n nodes, we first consider the setup
where each node is capable of measuring its bearing with
respect to a global coordinate frame, as shown in Figure 1a.
For an embedding problem in R¢, we write the location of
node i as z; = [z} z¢]. Given an embedding = =

T dn e .
[ml xn} € R satisfying all angular constraints,
any translation or scaling of x is also a valid embedding since
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Fig. 1: (a) A directed network of nodes with global angle
measurements; when a global orientation reference is avail-
able, angles can be measured with respect to this coordinate
system. (b) A directed network of nodes with relative angle
measurements. The component formed by nodes h,¢,; and
k is a rigid set of triangular constraints while node ¢ is
connected rigidly to this component.

these transformations maintain the global angles between
nodes.

In this case, the localization problem has been previously
studied by Brand [4]. In particular, it was shown that the set
of all bearing constraints can be written as a linear system
Az = 0, for which a least-squares solution can be easily
found.

If a single, unique solution x exists for an embedding
problem (up to these invariant transformations), we say that
this solution is rigid. Using the set of solutions to the
linear system Ax = 0, it is possible to identify the set of
maximally-rigid components of the network. In particular,
let N be a matrix such that the columns of N span the null
space of the matrix A. Then, for any weight vector w, we
have A(Nw) = 0 and thus and z = Nw is a solution to our
system. We show how this null space matrix N can be used
to identify all maximal rigid components.

III. WITHOUT A GLOBAL COORDINATE FRAME

We also consider the setup where each node is capable
of measuring its relative bearing to other nodes within the
network but where no global coordinate frame is known.
Equivalently, each node is able to measure the angle between
other nodes relative to its own position. This setup is depicted
in Figure 1b. The goal is to estimate the overall layout of
the network, up to a similarity transformation, based on this
bearing information.

The 2D layout of the network of n nodes is then repre-
sented by a vector x = [z1 xn}T € C". The
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Fig. 2: An angle constraint can be written as a triangle
constraint with one unknown parameter. We parameterize
this constraint as a triangle with an unknown side length,
re R+.

Cartesian coordinates of a node x; € C are given by the real
and imaginary parts of the number z;, respectively.

IV. LINEAR CONSTRAINT FOR TRIANGLES

Let ¢ be a node which measures the angle between two
other nodes j and k, denoted as 9; ;.- If three nodes all observe
each other, resulting in three angle measurements, then the
combination of all three constraints forms a triangular con-
straint. This triangular constraint is satisfied by any triangle
in the plane such that the three internal angles are the same as
those specifed by the three bearing constraints. We show how
such triangular constraints are, in fact, linear. The resulting
system of linear equations can be easily solved, resulting in
globally-optimal solutions for triangulated networks.

V. APPLICATION TO NON-TRIANGULAR
PROBLEMS

To deal with non-triangular constraints, we consider an
angle constraint as a triangle constraint with one unknown
angle. In this way, an angle constraint can be written as
a triangle constraint with an unknown parameter. This is
shown in Figure 2. Given a specified angle 6, the parameter
r controls the radius of one side of the triangle. A network
with arbitrary bearing measurments can be represented in this
way, as a set of parameterized linear constraints. We write
this system of equations as A(r)x = 0.

VI. OPTIMIZATION

We propose two different methods which rely on local
optimization to solve the system of parameterized linear con-
straints. The first is a simple alternating method. Beginning
with an initialization of r, the problem is linear and can be
solved optimally for x. Similarly, for a fixed value of z, the
optimal value of r can be easily found.

The second approach is based on the observation that for
a fixed value of r the optimal cost is given by the second-
smallest eigenvalue of a certain matrix. Indeed, the cost
function can be regarded as a function maps the parameter
vector 7 to the second-smallest eigenvalue of a parameterized
matrix. A local optimization can be performed using the
derivative of this function [5] in a gradient descent scheme.

VII. APPLICATION TO R® WITH GRAVITY

The problems discussed so far are not directly gener-
alizable to 3-dimensional space. However, in real-world
applications, it may be possible to determine the vertical
axis in the world even if the full orientation of the sensors
is not known. For example, photographs tend to be taken
such that they are aligned vertically or a vertical axis can
be determined by lines in the image such as the sides of a
building, or in a sensor network each node may be equipped
with an accelerometer that can be used to determine the
direction of gravity. In any case, if a vertical axis can be
determined then we show how a 3D reconstruction can be
decomposed into two parts. First, all angles are measured
orthogonal to the known vertical direction (i.e., projected
onto the 2D ground plane). The 2D layout of the network,
as if viewed from above, can be estimated using the methods
presented previously. Then, given an estimated 2D layout of
the network, we show how the vertical positions of the nodes
can be written as a linear system and easily found.

VIII. EXPERIMENTS

We evaluate our algorithms on several datasets. First, we
generate synthetic datasets to determine the succeptibility of
our methods to noise and find that they perform well. We
also apply our approach to “structure from motion” datasets,
where the network consists of both cameras and scene points
and the goal is to reconstruct the full layout of all nodes. This
done in 2D using synthetic datasets, as well as in 3D using
a real dataset of a toy dinosaur.
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