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I. INTRODUCTION

Autonomous underwater vehicles (AUVs) typically inte-
grate body-frame velocities, attitude, and pressure depth to
compute a dead-reckoned (DR) navigation solution. Errors
in xy horizontal position estimates grow unbounded in time
without regular access to an absolute position reference (GPS
is only available at the surface). Bounded error navigation
can be achieved with the aid of fixed acoustic beacon
systems such as long-baseline (LBL). While these systems
can accurately localize an AUV, they do not scale well to
large vehicle networks and can be expensive to deploy.

Synchronous-clock acoustic hardware allows communi-
cating vehicles to observe their relative range via the one-
way-travel-time (OWTT) of acoustic broadcasts [1]. OWTTs
provide a relative range measurement between the trans-
mitting vehicle pose at the time-of-launch (TOL) and the
receiving vehicle pose at the time-of-arrival (TOA). The
acoustic channel, however, is broadcast and unacknowledged,
provides very low bandwidth (typically less than 100 bps),
and displays low reception rates (often less than 50%).

We propose a cooperative localization framework in which
underwater vehicles act as mobile navigation beacons. Each
vehicle tracks a joint distribution over a set of its own
delayed-states (historic poses along its trajectory) and a set
of delayed-states belonging to its team members. We employ
a factor graph representation of the joint distribution in order
efficiently share information between vehicles and fuse them
in a consistent way. Moreover, this representation allows
each vehicle to partially reconstruct the full joint distribution
over all vehicle delayed-states without enforcing a specific
communication topology.

II. FACTOR-BASED COOPERATIVE LOCALIZATION

Factor graph estimation frameworks [2] have become a
popular tool in cooperative localization [3–5]. The under-
lying structure of the factor graph consists of information
local to each vehicle and information due to relative vehicle
measurements.

In the single vehicle setting, the factor graph approach is
a smoothing algorithm that estimates the entire trajectory of
the vehicle. A factor graph is a bipartite graph with pose
(variable) nodes and factor (measurement) nodes represent-
ing the joint distribution over the unknown poses. The ith

*This work was supported in part by the Office of Naval Research under
award N00014-12-1-0092.

J. Walls, A. Cunningham, and R. Eustice are with the University of
Michigan, Ann Arbor, Michigan 48109, USA
{jmwalls, alexgc, eustice}@umich.edu.

Fig. 1: Example factor graph estimation framework and corresponding
measurement Jacobian, A. Each row of pose nodes (large circles) represents
a single vehicle. The full (centralized) graph is highlighted in gray, while
the reconstruction on board the third (purple) vehicle is fully colored.

vehicle graph represents the joint distribution over its N
poses, Xi = [x1, . . . ,xN ], as

p(Xi) ∝ p(x1)
∏
i

p(zodoi |xi,xi−1)
∏
j

p(zpriorj |xj), (1)

where we assume each vehicle has access to its initial belief
p(x1). The graph structure is a chain as we only consider
unary ‘prior’ factors, zprior, (e.g., GPS when available at the
surface) and pairwise sequential ‘odometry’ factors, zodo,
(e.g., integrated velocity).

For convenience, we define a ‘link’, Li, associated with
the ith pose node, xi, as a 2-tuple containing the odometry
factor to the previous pose node and a prior factor. The local
chain is the set of links which represent the vehicle trajectory
corresponding to (1), Clocal = {Li}Ni=1. In Fig. 1, each row
of pose nodes in the graph represents a local chain.

We can construct the factor graph over the entire M
vehicle network (i.e., all vehicle poses), {X1, . . . ,XM},

p(X1, . . . ,XM ) ∝
∏
i

p(Xi)︸ ︷︷ ︸
Clocali

∏
k

p(zk|xik ,xjk)︸ ︷︷ ︸
relative factors

, (2)

where each zk represents a relative vehicle constraint be-
tween poses on vehicles ik and jk. Here, zk is a OWTT
range constraint between a transmitting vehicle’s TOL pose
and a receiving vehicle’s TOA pose. The factor graph for a
three vehicle network is illustrated in Fig. 1.

The gold-standard would be to compute the maximum a
posteriori (MAP) estimate for each vehicle in a centralized
estimator as

X∗i = argmin{X1,...,XM} − log p(X1, . . . ,XM ). (3)

For Gaussian noise models, the MAP estimate results in a
nonlinear least-squares problem with linear subproblem

min
X

∥∥AX− b
∥∥2 , (4)



where A is the measurement Jacobian weighted by the square
root information [2].

The full joint distribution (2) consists of a product of
each vehicle’s local chain and the relative vehicle factors.
Therefore, in order to construct (and perform inference on)
the full factor graph, the ith vehicle must have access to the
set of local factors from all other vehicles, {Clocalj}j 6=i, and
the set of all relative vehicle factors. Sharing this information,
however, is nontrivial due to the limitations of the acoustic
communication channel.

We propose two methods to reliably broadcast each vehi-
cles local chain throughout the network as the set of indi-
vidual factors. First, we exploit composition/decomposition
operations over odometry factors that are tolerant to commu-
nication dropout. Second, we employ approximate marginal-
ization [6] to accurately summarize the full set of factors
by a smaller set of approximate factors. Within the result-
ing framework, each vehicle regularly broadcasts a fixed-
bandwidth data packet containing a composed odometry
factor to its current position and several previously broadcast
prior factors. This broadcast information allows receiving
vehicles to reconstruct an informative portion of the trans-
mitter’s local chain.

Each vehicle can then reconstruct a portion of full factor
graph including the set of reconstructed chains, its own local
chain, and the set of relative vehicle measurements it has
observed locally (a subset of all relative observations). Infer-
ence is performed as a batch procedure on this reconstructed
factor graph as in (3).

III. FIELD TRIALS

For validation, we fielded two Ocean-Server Inc. Iver2
AUVs, termed AUV-A and AUV-B, and a topside support
ship. Results over a single trial are summarized in Fig. 2. A
topside vehicle with constant GPS access supported AUV-A
(with intermittent GPS) and AUV-B (see Fig. 2a). AUV-A
followed a large diamond over AUV-B’s lawnmower survey
while the topside vehicle drifted above the survey area.

Fig. 2b plots AUV B’s position estimate uncertainty for
the centralized estimator as well as the dead-reckoned and
decentralized estimators. Although we only compare to the
centralized estimator for AUV-B, note that all vehicles
compute a local reconstruction of the centralized estimator.
In this case, the centralized estimator used ranges between
all three vehicles. Our method only used ranges between the
local platform and the other vehicles, but still produces an
accurate estimate as evidenced by the resulting uncertainty.

IV. CONCLUSIONS

Accurate localization extends the capacity of AUVs to
perform ocean science. OWTT underwater cooperative local-
ization promises improved navigation for AUVs over larger
area and time scales without additional infrastructure. We
exploited the structure of the composition operation and an
accurate approximation of the local chain to robustly share
locally observed sensor data across a fragile communication
channel. Compelling avenues for future work include sharing
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(a) Relative paths (1.55 h), AUV-A, topside (not shown) have
GPS.
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(b) AUV-B’s estimate uncertainty.

Fig. 2: Summary of field trial and performance comparison. (b) plots the
smoothed uncertainty in each AUV-B pose computed as the fourth root of
the determinant of the pose marginal covariance.

global information throughout the network, i.e., information
beyond the local chain.
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