CENS Center for Embedded Networked Sensing

Stereo Vision-aided Navigation for Robotic Boats

Arvind Menezes Pereira, Gabriel Sibley, Gaurav Sukhatme, Amit Dhariwal, Bin Zhang, Carl Oberg, Beth Stauffer, Stefanie Moorthi and David Caron.

Robotic Embedded Systems Lab, University of Southern California - http://www-robotics.usc.edu/~namos

Stereo Vision to localize a Robotic Boat

Hardware

- Mini-ITX form factor, Linux Computer
- GPS
- 3DMG IMU
- Videre Stereo Head
- Micropix Color camera

Above: Buoy as Imaged by the Color Camera. Above: Buoy and Robot Boat at Lake Fulmor.

Why Stereo? Isn't GPS enough?

Stereo for Navigation

- Satellites can drop out of sight resulting in a loss of a GPS fix. Stereo ranging can be used as a *localization* aide.
- Range information can be used for *obstacle avoidance*.
- The vision system can be used to help in autonomous boat *docking*.
- Simultaneous Localization and Mapping (*SLAM*) of lakes may be possible.

Above: Left and Right Views from Stereo Camera

Preliminary Design and Initial Results

Can it even *work*?

- Visual Odometry on the Mars Exploration Rovers used Stereo feature tracking quite successfully.
- Previous work [1] indicates long range stereo can work in Marine Environments.
- Improvements in cameras and efficient computation will make real-time implementation possible.

System Block Diagram

Methodology

- Segment buoy using color blob and edgedetection.
- Use this information to identify buoy in stereo images.
- Compute average distance to buoy.
- Use heading information and global location to compute global estimate for boat position.
- Use a statistical filter to deal robustly with errors in estimating stereo distances.

Above: 3D-reconstruction of Long range stereo. [1]

Challenges

- Light intensity variations result in large, possibly non-linear swings in image intensities. This adversely affects stereo estimates.
- Lower light exposure and boat movements result in motion blur which also hampers good stereo feature matching.
- Error in depth estimates goes up as a square of the range. Here 'r' is range, b is the baseline, f is the focal length and d is the pixel disparity.

$$\Delta r = \left(\frac{r^2}{bf}\right) \Delta d$$

Ongoing and Future Work

- Stereo bias removal and configurations with larger stereo base-lines, Higher resolutions are being explored.
- A Kalman filter to estimate boat state and a particle filter for landmark tracking is planned.
 Stereo vision produces range maps which are useful for obstacle avoidance. This will be implemented to give navigation and actuator outputs.
- A docking system for a robotic boat using stereo vision for positioning and alignment.
- [1] Gabe Sibley, Larry Matthies, and Gaurav S. Sukhatme, "Bias Reduction and Filter Convergence for Long Range Stereo," In *12th International Symposium of Robotics Research*, 2005.

2.0 6.0 10.0 14.0 18.0 22.0 26.0 30.0 Range (meters)

Above: Comparison of Standard stereo & Bias corrected stereo. [1] Below: Preliminary results without Bias correction using our System.

