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Energy efficiency has become a very important and challenging issue for resource-constrained

mobile computers. In this article, we propose a novel dynamic software management (DSOM)

framework to improve battery utilization. We have designed and implemented a DSOM module

in user space, independent of the operating system (OS), which explores quality-of-service (QoS)

adaptation to reduce system energy and employs a priority-based preemption policy for multiple

applications to avoid competition for limited energy resources. Software energy macromodels for

mobile applications are employed to predict energy demand at each QoS level, so that the DSOM

module is able to select the best possible trade-off between energy conservation and application

QoS; it also honors the priority desired by the user. Our experimental results for some mobile

applications (video player, speech recognizer, voice-over-IP) show that this approach can meet user-

specified task-oriented goals and significantly improve battery utilization.
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1. INTRODUCTION

As we enter the era of pervasive computing, users are expecting more ubiquitous
services and higher productivity from mobile computing systems. However, mo-
bile computers are constrained by scarce resources, such as small memory, slow
CPU, etc. They are specially constrained by limited battery capacity because
of the weight/size limits for the battery. In view of the slow battery capacity
growth, it is increasingly important to develop techniques to achieve high en-
ergy efficiency for such systems. Energy efficiency in this context refers to the
amount of service work that the system can accomplish given a battery capacity
constraint.

Computer systems provide services to their users through software pro-
grams, which demand different hardware resources. Therefore, software and
hardware form a pair of consumer and supplier of resources. From this resource-
centered point of view, existing energy efficiency research can be coarsely cat-
egorized as follows.

—Energy-efficient hardware design techniques optimize the supplier so that
less energy is consumed for the same supply of resources. Most processor
and circuit power optimization techniques [Rabaey and Pedram 1996; Chan-
drakasan et al. 2000] fall into this category. These techniques are indepen-
dent of the upper software system. They reduce the overall power level of
the systems, including both the idle power when the computer does not per-
form any useful work and active power when the software workload actually
executes on the computer.

—Software optimization techniques optimize the consumer so that less energy
is required for the same software service. Most compilation [Kandemir et al.
2002] and software transformation techniques [Peymandoust et al. 2002; Tan
et al. 2003; Fei et al. 2004] fit into this category. They mainly target active
power during the execution of the software program.

—Another category of techniques scales the supply according to demand. All
dynamic power management (DPM) and dynamic voltage/frequency scal-
ing (DVFS) techniques belong to this category [Pering et al. 1998; Ishihara
and Yasuura 1998; Jha 2001; Pouwelse et al. 2001]. They try to put the
hardware components into low-power modes as often as possible. This cate-
gory also includes OS-directed power management and optimization [Lee
et al. 1999; Nahrstedt et al. 2001; Zeng et al. 2002; Benini et al. 2003;
Zeng et al. 2005]. The ECOSystem [Zeng et al. 2002; 2005] presents a cur-
rentcy model to unify energy accounting over diverse hardware components
and embeds this model in the operating system to enable fair allocation of
available energy among applications. Each application needs to provide its
own currentcy demand model to the OS. The techniques presented in Lee
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et al. [1999] and Nahrstedt et al. [2001] use quality-of-service (QoS)-based
resource reservation, in which applications pass specific resource demands
to the OS for it to reserve the minimum required resources (fraction of CPU
cycles, network bandwidth, etc.) for them. Note these techniques may also
conversely adapt application QoS based on the resource availability (i.e., sup-
ply).

DPM and DVFS techniques have been shown to be quite effective in systems
where the available hardware resource is more than adequate for the tasks
being run. However, in resource-constrained mobile computing systems, the
slow processors, small memory, and limited battery capacity may not always be
able to cope with the increasing demands of software. In such cases, there may
not be much room for DPM and DVFS techniques to save energy. Therefore, a
number of recent works have tried a different approach: scaling the demand
according to supply.

1.1 Related Work

Scaling the demand usually means reducing the service the application pro-
vides to the user. For data-intensive applications, the demand can be reduced
by scaling data fidelity, i.e., the input to the application. The Odyssey system
[Noble et al. 1997] adopts this approach and provides for a collaboration
between the OS and applications to improve performance. Similarly, the
Puppeteer system [De Lara et al. 2001] filters the input content through
component-based adaptation. The Odyssey system was also extended by
Flinn et al. to enable data fidelity adaptation for energy reduction
[Flinn and Satyanarayanan 1999]. Shenoy et al. used the same philosophy to
transform the requested network data stream to reduce receiving and decoding
energy [Shenoy and Radkov 2003]. All these approaches are input data-centric
and OS-based.

Another way to scale the demand is to change the QoS, which may imply
altering the software computation fidelity instead of data fidelity. In mobile
systems, the QoS refers to the service the software programs provide to the
user by exploiting various hardware resources. For instance, the human vi-
sual perception of a video clip and aural perception of an audio segment define
the QoS. An application adaptation framework is discussed in Bharghavan
and Gupta [1997] which builds a general framework to communicate with the
applications and manipulate the applications, but it does not target realistic
applications and specific optimization objectives. The EQoS system develops a
framework that can adapt the execution of applications to maximize energy-
aware utility [Pillai et al. 2003]. They present several optimal algorithms and
heuristics, but the system only targets real-time applications. Recent works
[Chang and Karamcheti 2001; Narayanan and Satyanarayanan 2003] provide
examples of how the computation fidelity of mobile applications can be al-
tered. However, they do not present a methodology or framework for accom-
plishing this task automatically and target system delay reduction instead
of energy saving. An integrated power-management approach is presented in
Mohapatra et al. [2003] that unifies adaptive middleware techniques with
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low-level architectural and OS-optimization mechanisms to reduce energy con-
sumption. However, it only targets video streaming application and does not
provide a general adaptation framework.

Another issue related to scaling the demand is how to coordinate multiple
scalable applications. Competition among multiple applications for the con-
strained resources needs to be addressed. Efstratiou et al. [2002] demonstrated
a platform to enable coordination among applications to avoid conflict. It is a
general platform without specific objectives, such as improving performance
or conserving energy. It is only targeted at Windows NT-based systems. In
Rajkumar et al. [1997], a Q-RAM model is presented to allocate resources to
the concurrently competing applications, such that the overall system perfor-
mance utility is maximized and each application can meet its minimum needs.
The Q-RAM approach is extended to maximize energy-aware system utility for
battery-powered embedded systems in Park et al. [2003]. These approaches
are still OS-based and it is cumbersome to derive accurate utility curve for
each competing application and resource consumption curve for each kind of
resource. The GRACE project proposes a hierarchical framework to adapt dif-
ferent applications at different system layers (including the hardware, network,
operating system, and applications) in a coordinated fashion [Yuan et al. 2003;
Sachs et al. 2004]. However, it is mainly restricted to multimedia applications
running on wireless systems.

Except for a few works of Flinn et al. [Flinn and Satyanarayanan 1999],
Shenoy et al. [Shenoy and Radkov 2003], EQoS project [Pillai et al. 2003],
and GRACE group [Sachs et al. 2004], all the previous works target nonen-
ergy related resources. Most investigate software adaptation for communica-
tion (network bandwidth) and computation resources (CPU cycles). The work
of Flinn et al. in Flinn and Satyanarayanan [1999] actually demonstrates
the difficulty of energy-aware application adaptation, since it requires extra
equipment for real-time energy measurements and a data-processing computer,
which is impractical for mobile systems. Previou work on application adapta-
tion to reduce network bandwidth [Noble et al. 1997] was quite successful, since
network bandwidth is relatively easy to estimate. Moreover, most of these ap-
proaches need OS support, which is difficult to implement for systems that use
a closed-source OS. Therefore, there is a strong need for a practical and gen-
eral dynamic software management (DSOM) framework for runtime energy
optimization.

1.2 DSOM: Opportunities and Challenges

Traditional DPM techniques for computers have mainly exploited various low-
power modes of hardware components, such as active, idle, sleep, and off states
for the memory, hard disk, display, and network card [Li et al. 1994; Gauthier
et al. 1996; Feeney and Nilsson 2001; Delaluz et al. 2001; Choi et al. 2002].
Analogous to hardware power modes, many software applications also have
multiple working states, which correspond to multiple energy/power modes.
Therefore, we envision automatic adjustment of adaptable applications to lower
energy modes when the battery level is low.
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The multiple software working states can be exploited by setting certain
runtime parameters, or knobs. These tunable knobs represent alternative al-
gorithms or implementation paths during application execution. The net effect
perceived by the user is different output QoS for the same input. Each working
state may use a different amount of hardware resources, including CPU cycles,
memory, bandwidth, network interface card activation, etc., which leads to dif-
ferent energy/power consumption. The DSOM module should determine on the
fly when to scale the application and to what working state so that an energy
saving is achieved at minimal cost in quality.

We believe that DSOM will become an important and complementary ap-
proach to the conventional DPM and DVFS techniques in improving energy ef-
ficiency, especially for resource-constrained mobile systems. However, it raises
several challenges in design and implementation:

1. First, we need to expose the adaptation points and the associated parame-
ters such that manipulations can be performed effectively on the software
programs and system. We focus on the adaptation points in software compu-
tation instead of data input. Some efforts may be necessary to modify the ap-
plications to expose software knobs [Narayanan and Satyanarayanan 2003].
However, many mobile software programs have built-in adaptable points.

2. The communication through the software layers becomes a critical issue.
It occurs at the interfaces between the upper application level and the OS
layer, in both directions. The question is what information can be generated
and passed at each level? Appropriate application-programming interface
(API) and efficient communication mechanisms need to be built.

3. The management of the software programs should be directed by certain
policies, i.e., when to trigger application adaptations and what low-power
mode to select? It is nontrivial to derive an effective policy, which is neither
too aggressive in frequently adapting the applications and sacrificing QoS,
nor too conservative in maintaining a high QoS level and draining the
battery quickly.

4. In order to manage the software programs dynamically, energy estimation
for the adaptable applications at each adaptation point should be performed,
which requires an accurate and efficient on-line energy estimation module.

1.3 Article Contribution

In this work, we propose an application adaptation and multiple-application
coordination framework, DSOM, based on software energy macro modeling
techniques [Tan et al. 2002]. It is an energy-aware framework that dynamically
adapts multiple mobile applications and differs from all the previous related
work. The framework contains the following features:

— It utilizes software energy macro modeling and obviates the need for extra
equipment for real-time energy measurements [Flinn and Satyanarayanan
1999], which is impractical for handheld computers.

— It is implemented as portable middleware using only POSIX-compliant sys-
tem APIs. Thus, it requires no changes to the OS.
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— It is task-oriented and goal-directed. The user can specify his/her goal in
terms of expected task duration or number of tasks and different applications
that need to be simultaneously run. The framework automatically finds the
best QoS trade-off for the goal, in view of the available energy resource.

— The framework exploits multiple QoS knobs (in software computation) that
can be tuned for embedded applications to meet the desired goals.

To summarize, our proposed framework is energy-aware, general, portable,
and user-friendly. Our experiments establish its effectiveness for several real
mobile applications, such as video player, speech recognizer and voice-over-IP.

The article is organized as follows. In Section 2, we provide background infor-
mation for this work along with motivational examples. We present the overall
DSOM framework in Section 3 and detail the design and implementation of the
coordinator and dynamic software manager in Section 4. We present results of
experiments conducted on a Linux-based iPAQ with our prototype implemen-
tation on several applications in Section 5. Finally, we discuss some limitations
of the framework and conclude in Section 6.

2. MOTIVATION AND PRELIMINARIES

In this section, we first motivate, through an example the necessity and efficacy
of application adaptation for energy saving. We then present the advantages of
application coordination for battery-constrained systems. Finally, we provide
the rationale for the management policy in an energy-aware framework for
DSOM.

2.1 Motivational Example

We first need to characterize the resource usage (energy) for each working state
of the application. Adaptation of applications will be futile if the energy saving
is meager. We use a software video player application—mpeg play [MPlayer]—
as our motivational example. It is known that changing the data fidelity of an
input video clip (by using different lossy compression methods when encoding
video clips or using different display window sizes) will induce different en-
ergy consumption [Flinn and Satyanarayanan 1999]. However, changing the
computation fidelity of applications for energy saving has not been adequately
explored. We define a QoS space for the video player application, as shown in
Figure 1. It has multiple parameters (dithering method, frame rate, frame dis-
play size), where each parameter represents a QoS dimension, which contains
a finite set of discrete quality values. The combination of quality values in each
dimension is referred to as a QoS point, which is associated with an energy cost.
All possible QoS points together form the QoS space of the application. The QoS
point in Figure 1 corresponds to the running state consisting of a 20 fps frame
speed, 100 × 100 pixels display size, and monochrome dithering method.

The video player application consists of three functional steps for each frame:
decode, dither, and display. Most time and energy are consumed in the first two
steps. It is shown in Chakraborty and Yau [2002] that frame display size has
little effect on energy consumption. A user may prefer to watch the video clip
at a particular frame rate. Therefore, the frame rate is not frequently varied.
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Fig. 1. QoS space for a video player.
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Fig. 2. Energy impact of the dithering method.

Dithering modes tune the color exposition of the frame and is present to us
as one effective way to adapt the application. We analyzed various dithering
methods and found four modes with human-perceptible differences: color, gray,
monochrome, and threshold, out of a total of 19 modes.1 Figure 2 shows the
measured result of energy consumption of four video clips under different
dithering methods on a Linux-based iPAQ 3870. We observed that the aver-
age energy saving for the lowest power mode (threshold) is 25.3% compared to
the original full-color mode (color). This is a simple illustration of the impact of
changing the computation fidelity on system energy consumption. Note that the
QoS of application modes is not necessary to be in proportion to their energy
usage. For each application, we need to characterize its specific relationship
between energy consumption and QoS.

1The visual effect of using these different dithering methods is in the color of video images, for

example, color refers to colorful exposition of frames, and all the other three modes refer to black

and white frames where gray represents gray, monochrome is an intermediate black and white,

and threshold represents sharp black and white.
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2.2 Coordination among Multiple Applications

In mobile computers, it is common to have several applications running con-
currently (e.g., a user may enjoy music using the software MP3 player, while
downloading another MP3 file and playing Solitaire at the same time). They
compete for the constrained resources of CPU cycles, memory, etc., and, ulti-
mately, battery. It is the responsibility of the OS to assign and manage the
resources among multiple applications in a fair way. However, since an OS
is unaware of user intention (urgency level of each application), it may treat
concurrently running applications equally, and cause all of them to simultane-
ously abort in the middle of execution when the battery goes down. To avoid this
scenario, a user-defined application priority should be considered when a new
application joins the system. We propose a coordinator as middleware, which
can control the admission of a new application according to its priority and
those of currently running ones. The coordinator also decides on adaptations
for the newly admitted and other existing applications.

2.3 Policy for Dynamic Software Management

For the concept of DSOM to be useful, a policy is needed to determine what
and when to adapt. A naive way to manage software adaptation is analogous to
the time-out DPM technique frequently employed for hardware, where several
time thresholds are used for transitioning hardware to lower power modes. One
could similarly set a number of energy thresholds for DSOM. The battery en-
ergy status could be periodically checked and the appropriate execution mode
for running applications selected accordingly. However, this policy is ad hoc,
aggressive, and application-independent, and may have the unfortunate side
effect of frequently annoying the user. Hence, we propose an application adap-
tation policy, which is directed by certain user-defined goals, and is oriented for
each task, as discussed in detail in Section 3.

In mobile systems, a user may be able to estimate the needed duration for a
task, for example, the length of a movie and the length of a conversation with
peer mobile users. In such cases, we set the expected duration for the task as
the goal. Only when the residual battery energy cannot sustain the goal is ap-
plication adaptation triggered. Consider the following scenario: the user wants
to watch a 60-minute long video clip with the energy consumption estimate of
the video clip for the highest quality mode being 3600 J, whereas the residual
battery energy is only 3200 J. Suppose the energy consumption under the four
dithering modes are 3600, 3400, 3150, and 3000 J for color, gray, monochrome,
and threshold, respectively. The application will adapt to the monochrome mode
automatically to meet the goal of displaying the whole video clip, thus providing
the highest possible QoS. However, in many cases, where the expected appli-
cation duration could not be specified, the system will bypass the adaptation
engine and always provide best-effort QoS.

3. FRAMEWORK DESIGN

To manage adaptable applications according to the battery status, in order
to meet the task-oriented goal, we need an application-coordinating software
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Fig. 3. A coordination framework for application adaptation.

manager in middleware, which fuses information from the application level
above and the OS and platform below, and delivers adaptation and coordina-
tion commands to either the application or the underlying OS modules. In this
section, we explain the design of a user-level DSOM framework geared toward
energy savings.

3.1 Overview of the Framework

Figure 3 shows the overall framework for mobile systems. We envision the
whole system to consist of several vertically communicating layers, which are
categorized into user space and system space. The hardware platform contains a
set of resources, such as a processor, memory, display, wireless card, and battery.
The resource manager in the OS layer monitors the status of each resource and
manages their usage. The process manager controls the creation, execution,
and termination of processes, and provides information on running processes.
The OS also provides a set of APIs to interact with the user-space modules.
Above the OS layer is the middleware that we have developed, which consists
of several modules that can interact with either the upper application layer or
the OS layer.

In the framework, each scalable application should first register to an appli-
cation registry with its metadata, e.g., the name of the service and the number
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of low power modes. Meanwhile, the description of adaptation modes for each
application is stored into a runtime library, along with the power macromodel
to estimate the average power consumption for each low-power mode, in order
to aid application adaptation.

On top of the middleware is the application and user layers. When multiple
applications are running concurrently and competing for resources, the user can
specify the priority level for each application if he/she so chooses. For example,
when a soldier is using a PDA to talk with his peers in battlefield, and, at
the same time, is downloading map information from an encrypted website,
he might specify that the voice-over-IP application has higher priority over
the network browser, or vice versa. For different instantiations of the same
registered application, the user can specify a different priority level.

The resource monitor module in our framework polls the OS resource man-
ager and calculates the residual battery energy value. Based on the application
metadata, application-specific configurations and priority, residual battery en-
ergy value, and information on running processes obtained from the process
manager, the coordinator performs admission control and adaptation arbitra-
tion. Thus, an appropriate application configuration is selected for the newly
joining application, and coordination is carried out among the other running
applications. We describe the coordinator in detail in Section 3.3.

3.2 Task-Oriented Goal-Directed Software Management

We consider three different cases for task-oriented software management and
set up corresponding goals and policies to perform DSOM, as discussed next.

In the first case, altering application modes only changes average system
power while the execution time remains the same. This case applies to a syn-
chronized video player. The frame rate determines the sum of processing time
(including decoding, dithering and displaying) and synchronization time for
each frame. The length of a video clip can be calculated by the number of frames
and frame rate beforehand. The task-oriented goal is set to duration of task
(e.g., length of a movie). At the configuration and adaptation point, we detect
the initial battery energy and calculate the expected average system power
(supply). We also evaluate the power consumption for each mode (demand) by
the demand predictor. We then select the adaptation level with average system
power just under what is sustainable by the battery energy level. In this way,
the goal is met with the least QoS degradation.

In the second case, the execution time is variable while the average system
power is constant for different application modes. Our goal is now set as maxi-
mizing the number of tasks executed. The more tasks that complete execution
with the same energy constraint, the higher the battery utilization. A speech
recognizer falls into this category. When we make a slight sacrifice in speech
recognition QoS, we gain in terms of execution speedup (thus also reducing
system energy).

In the third case, both the power and execution time vary for different
application modes. The goal now targets both task duration and number of
tasks. The system should finish the execution of all the tasks before their
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deadlines. If the system runs out of battery before the application finishes
execution, or if the application execution does not complete before its dead-
line, the goal is not met, and the system degrades to provide a “best-effort”
service.

Each registered application can be put into the above three categories, with
its corresponding goal specified in the runtime library. The coordinator prompts
the user for this information to make an adaptation and coordination decision.

The pseudocode for application QoS level configuration is shown in Algo-
rithm 1. The initial residual energy (ener) and the user-specified time goal
(goal ) determine the expected average power consumption (Pavg) for the speci-
fied duration (line 3 in Algorithm 1). At each adaptation point, the coordinator
evaluates the service for the adaptation block (line 7), estimates the average
power ( �P ) and execution time ( �T ) for each QoS level, and selects the best QoS
level to meet the user-specified goal (lines 8–16). We employ a history window-
based power budget regulation method for the QoS level configuration. The
average power of the selected QoS level should be just below the upper limit set
by the minimum value between α ∗ Pavg and 2 ∗ Pavg − Plast, where α is a con-
stant value larger than 1, e.g., 1.1 is used in our experiments, which determines
the laxity of the adaptation policy, and here we set the history window size at 2
and Plast is the average power for the last adaptation block. The algorithm tries
to keep the average power value of two consecutive adaptation blocks below
Pavg so that the user-specified duration goal can be met. The service ends ei-
ther when the task goal is met, or the specified duration deadline is reached, or
when the residual energy drops to zero (the conditions are described at line 6).
The first case represents a successful completion of the application, while the
others represent a failure. At the end of the experiment, the larger the residual
energy, the more conservative software management may be, and the QoS level
can be set higher.

Algorithm 1 (∗ service command(name, goal, priority, �param) ∗).

1. initialize service(name);

2. detect residual energy(ener);

3. Pavg←ener/goal;(∗ average system power for the specified duration ∗)

4. Plast←0;(∗ average power for the last adaptation block ∗)

5. Telapsed ←0; i←0;(∗ the elapsed time and task index ∗)

6. while (i < n and Telapsed < goal and ener > 0)

7. do evaluate(Blocki , �P , �T , Num); (∗ estimate the power/time vector for number

of Num different QoS levels ∗)

8. Pupper←min(α ∗ Pavg, 2 ∗ Pavg − Plast);

9. if (P [num − 1] > Pupper)

10. then level←num − 1;

11. else
12. for j←0 to Num
13. do if (P [ j ] < Pupper)

14. then level← j ;

15. break;
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Fig. 4. The design and flow of the coordinator.

16. P←P [level];
17. execute(Blocki , P, level);
18. Plast←P ;

19. i++;

20. detect residual energy(ener);

21. report time(Telapsed );

The demand predictor is also implemented in the runtime library and esti-
mates the energy demand of each software mode at the adaptation point. This
module is application-specific and is described in detail in Section 4.2.

3.3 Coordinator Design

Figure 4 depicts the design and flow of the coordinator. First, the metadata of
the newly joined application and the process space information are given as
input to the admission control unit. The application metadata should contain
the priority level and number of power modes. The process space information
obtained from the process manager covers the running processes and their
association with applications. We employ a simple preemption and reservation
policy for coordination. When there is any application running with a higher
priority than the new application, the battery energy is reserved for the
higher-priority applications, and the remaining energy is assigned to the new
application for appropriate adaptation. Otherwise, it is admitted and other
applications with lower priority yield the resources. Several fallback actions
can be invoked for these yielding applications: suspend, abort, or rollback,
which is explained in Section 3.4.

If the new application is admitted, it is evaluated under the constraint of
current residual battery capacity and an appropriate configuration mode is
obtained. Each admitted adaptable application has a supporting runtime li-
brary, which contains the description of various application modes and energy
macromodels for both the demanded QoS and other QoS levels. By default, the
demanded QoS of an application is assumed to be the highest quality level. If
the demanded QoS energy is larger than the residual battery energy, the DSOM
module triggers an adaptation for the application. If even at the lowest power
mode, the residual battery energy is not sufficient, the application is forced to
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launch at the lowest power mode. The application’s configuration is delivered
to the adaptation manager, which invokes the application with an appropriate
mode from the runtime library.

Algorithm 2 describes this coordination policy in detail. Applications are
classified into two categories, according to their user-specified priority. When
a service with a high priority is called (line 2), we check the service list that
contains the concurrently running applications (lines 4–8). The applications
with a low priority yield the resources to the new service (line 6) and other
high-priority applications keep running and competing for the battery with the
new one. When the new service has a low priority (line 9), we still check the
service list (line 10). If there are high-priority applications running (line 11),
we reserve battery energy for them and the remaining energy is assigned to the
new service for appropriate adaptation (line 12). Otherwise, each low-priority
application views itself as the only one using the battery and all of them compete
for the battery energy on a fair basis (line 14).

Algorithm 2 (∗ Coordinator(servicelist, newservice) ∗).

1. prior←(newservice→priority);

2. if prior=high

3. then service←servicelist;
4. while service �=NULL

5. do if (service→priority)=low

6. then send pause signal(service→children);

7. service←(service → next);
8. evaluate(newservice, current battery);(∗ evaluate the appropriate

working state, competing with other high-priority applications ∗)

9. else
10. flag← search(servicelist);
11. if f lag=high

12. then evaluate(newservice, remain energy);(∗ energy reserved for high-

priority applications ∗)

13. else
14. evaluate(newservice, current battery);(∗ compete with low-priority

applications ∗)

3.4 Scalable Adaptation Block

In our framework, the QoS level is negotiated between the application and
coordinator before the application is launched. We define an adaptation block
to be the block of application code that consists of a set of alternative sequences
of execution, each associated with a different QoS level. The adaptation block
can be the whole application when all the software knobs are global for the
whole program. In other cases, sequential application execution can be divided
into more than one adaptation block, each with its local software knobs. When
the application has to yield to others, it may take one of three fallback actions. It
may be suspended, aborted, or rolled back. A suspended application resumes at
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Fig. 5. The data structure of component.

the original QoS level at the suspension point. An aborted application is dropped
from the system. Under rollback, an application detects which adaptation block
it is in, and when it resumes, it rolls back to the beginning of the adaptation
block, renegotiates with the coordinator, determines the new quality level for
the adaptation block, and executes at the new QoS level. Such scalability in
adaptation block size is a characteristic of adaptable applications, which is not
the focus of our work. Our main contribution is building a general energy-aware
DSOM framework. Therefore, we currently assume the whole program to be an
adaptation block and tune the global software knobs, although we recognize
that this approach can be scaled down to finer-grained adaptation blocks with
local knobs.

4. FRAMEWORK IMPLEMENTATION

We have built a prototype user space DSOM framework in middleware. The key
components are the runtime library, which provides the adaptation configura-
tion calls to the applications, and the coordinator, which negotiates/renegotiates
with applications and assigns configuration modes or fallback operations to
each application. The framework is implemented as a daemon server in user
space, the communication between the applications and the coordinator is im-
plemented in a client-server fashion [Pouwelse 2003] and the communication
between the coordinator and processes is implemented with signals. More de-
tails of implementation can be found in Fei [2004]. We illustrate next each
salient feature of the framework.

4.1 Registry

Each adaptable application needs to register its metadata in a registry, and is
allocated a data structure called component, as shown in Figure 5. The name
for the service provided by the application is assigned to the servicename entry
of component. For example, we give the service name “video” to the MPEG-1
video player, mpeg play [MPlayer], “voip” to a voice-over-IP application, RAT
[RAT], and “speech” to a dynamic neuron-network based speech recognizer,
DNN [Zhong et al. 1999]. The application also specifies the number of low-
power modes that it can support to the levels entry of component.
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Fig. 6. The data structure of service.

For each service instantiation, we allocate a data structure called service with
the specified name, which is illustrated in Figure 6. It inherits all the metadata
from the registered component with the same service name, and appends some
more parameters. For example, when the user launches a service and the asso-
ciated application programs, he/she can specify the urgency level by filling the
priority entry in the service object. Also, an entry called goal is reserved for the
user to specify either the expected task duration or the workload expectation.

4.2 Runtime Library

The runtime library provides the functionalities required by the application
to interact with the coordinator. Interaction between the application and the
coordinator is structured as follows. The coordinator (on the server side) listens
to the requests from clients at a default port. Upon startup (a client issuing
text commands), the server receives the request, parses it, and executes corre-
sponding commands. When the user launches an application, he/she issues a
command specifying the service name, service priority, and execution goal, etc.
The coordinator loads the corresponding runtime library for the application,
which evaluates energy/power/execution time for all possible QoS levels, along
with other application-specific information and handlers. The coordinator ne-
gotiates with the new application and other running applications and makes
admission control, adaptation configuration, and fallback operation decisions.
The runtime library can be viewed as a wrapper for each application. When an
adaptation configuration is decided upon, it is passed on to the wrapper through
the adaptation manager, and the application executed at the negotiated QoS
level.

An important module in the runtime library is the energy estimator for
an application at different QoS levels. The Odyssey system [Flinn and Satya-
narayanan 1999] takes an on-line power/energy profiling approach, which re-
quires extra measurement hardware and a computer. This is not appropriate
for portable systems. Instead, we use software energy macro modeling to pre-
dict required system energy. Previous work [Krintz et al. 2002] has tried to
predict program power using some application-level software tools. Currently,
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we embed an application-specific energy estimation module in the runtime li-
brary. Based on the prebuilt energy macromodel, the application inputs, and
other specific information, energy prediction is performed for all the QoS levels
and used by the coordinator to make a decision. We briefly describe the en-
ergy macromodel for each application—video player mpeg player, voice-over-IP
RAT, and speech recognizer DNN.

4.2.1 Energy Macromodel for the Video Player. An MPEG-1 video stream
consists of three frame types: I frame (intracoded), P frame (predictive-coded),
and B frame (bidirectional-coded). The video stream is played at a fixed frame
rate. In each frame period (inverse of the frame rate), a frame is decoded and
displayed on the screen (note that the decoded frame and the displayed one may
not be the same). It takes several steps to process each frame: parsing, inverse
discrete cosine transformation (IDCT), reconstruction, and dithering [Mitchell
et al. 1996]. Among these steps, the first three are CPU intensive and frame-
type dependent (each frame type requires a different type of processing) and
can be grouped as a decode step, while the dithering step is memory intensive
(requires data movement between the processed video stream and the display
frame buffer) and frame independent (i.e., it is independent of the frame type).
Thus, we can divide the frame period into several functional processes: decode,
dither, display, and idle. Hence, the energy consumption of the video player can
be obtained from Equation (1).

E =
n∑

i=1

(Pdecode · Tdecode,i + Pdither · Tdither,i + Pdisplay · Tdisplay,i + Pidle · Tidle,i)

(1)

where n denotes the total number of the frames in the stream, Pdecode, Pdither,
Pdisplay, and Pidle represent the average power consumption for each step, and
Tdecode,i, Tdither,i, Tdisplay,i, and Tidle,i represent the time spent in each step in
frame i, respectively. The sum of execution times for each step in a frame period,
Tperiod, satisfies the relationship in Equation (2).

Tperiod = Tdecode,i + Tdither,i + Tdisplay,i + Tidle,i (2)

We first need to characterize the energy macromodel for the video player.
The standard regression analysis method is adopted for this purpose. We ran
a set of test programs, measured the total energy consumption and execution
time for each step, and calculated the average power consumption coefficients,
such as Pdecode, Pdither, Pdisplay, and Pidle. Note that for this application, we tune
the software knob corresponding to dithering. Therefore, we obtain a vector for
Pdither with four different values for the color, gray, monochrome, and threshold
modes. Similarly, we also obtained a vector with twelve values for frame type-
dependent Pdecode and Pdisplay, respectively.

When using the energy macromodel for each application mode, we need to
estimate the execution times Tdecode, Tdither, Tdisplay, and Tidle, in each frame. The
only available input is the video clip. A software package that comes with this
application, mpeg play, contains a module called mpeg stat, which can extract
some statistical information for the video, such as the frame rate, encoding
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Fig. 7. Accuracy evaluation of energy macromodels for different QoS levels.

resolution (in pixels), frame structure, type, and size (in bytes) of each frame, etc.
We derived relationships between the processing time and video characteristics
for each processing step. It has been shown in a prediction model [Bavier et al.
1998] that the decoding time of each frame is linearly dependent on the frame
size:

Tdecode,i = α ji ,k + β ji ,k × X i (3)

where X i is the frame size in bytes, ji denotes the type of frame (I/P/B) of
frame i, k represents the type of dithering method taken, and α ji ,k and β ji ,k are
constants. The dithering time and display time are linearly dependent on the
frame resolution and independent of frame size and type. Equations (5) and (5)
show this relationship.

Tdither,i = ζk + ηk × W × H (4)

Tdisplay,i = μk + νk × W × H (5)

where W is the horizontal size of a frame in pixels, H is the vertical size, and
ζk , ηk , μk , and νk are constants dependent on the dithering method.

For each frame, the idle synchronization time can be calculated from Equa-
tion (2). For some mobile computer systems, the calculated idle time may be
less than zero, which shows that the computer does not have enough comput-
ing capability to run the video at the given frame rate.

The impact of our energy macromodel and execution-time estimation tech-
niques is shown for two video clips, each with four dithering methods
(Figure 7). In this figure, the absolute energy estimation error is plotted for
different dithering modes. The error is calculated with respect to measured re-
sults on an iPAQ. The overall error is under 12% with the average error being
7.6%, which is acceptable for on-line application adaptation.

4.2.2 Energy Estimation for RAT. We use a similar procedure to estimate
energy consumption for a voice-over-IP application, RAT [RAT]. The applica-
tion can execute under different audio quality settings, which contains a set of

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 27, Publication date: April 2008.



27:18 • Y. Fei et al.

2

2.2

2.4

2.6

2.8

3

3.2

Idle Active Mono16 Stereo16 Mono48 Stereo48

P
o
w

e
r 

(w
)

Different states

Fig. 8. Variation of power for different states.

parameters, such as mono or stereo channels, audio sample rate, received sam-
ple conversion quality, audio encoding algorithms, channel transmission encod-
ing algorithms, etc. These parameters and their corresponding values compose
the QoS space for RAT. For different QoS points, there are different active
sending and receiving power consumptions.

Note that RAT is a real-time interactive system and there also exists idle
time between sending and receiving audio. Thus, we need to consider the idle
power as well. If a user specifies the duration goal for the conversation, two time
values are considered: total duration and an approximate conversation time
(assuming the sending and receiving times are equal). The energy macromodel
is as shown in Equation (6).

E = Psend · Tsend + Preceive · Treceive + Pidle · Tidle (6)

Figure 8 shows the average power measurement on the iPAQ for sending
audio, when running RAT, under different settings and QoS levels. Idle rep-
resents the wireless card-on state, with RAT not running; Active is the state
after launching RAT, but without audio communication. The other four states
indicate different sampling rates and channel options. For example, Mono16
uses a mono channel at a sampling rate of 16 KHz, while Stereo48 uses a stereo
channel at a sampling rate of 48 KHz. We observe that power consumption is
more sensitive to the sampling rate than the channel option. The power differ-
ences among the states can be exploited for energy saving by choosing a lower
sampling rate.

4.2.3 Energy Estimation for the Speech Recognizer. The dynamic neural
network based speech recognizer, DNN [Zhong et al. 1999], is an application
with rich configurations (adaptation opportunities) for the neural network. It
contains two integrated parts: training and recognition. At the front end, a set
of speech utterances is used to extract speech features for training proposes,
and the neural network parameters are stored in a file. At the back end, when
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a new utterance is provided as input, the recognizer loads the neural network
parameters and outputs the recognized text for this utterance.

There are a number of tunable parameters for the neural network structure,
such as the time window size for the hidden layer, size of the input feature
window, number of hidden layers, etc. Figure 9 shows the impact of one tunable
parameter, number of hidden layers, on the recognition time. It shows a linear
relationship: with an increase in the number of hidden layers, the recognition
time, and corresponding energy (power remains roughly constant) increase.
Meanwhile, increasing the number of hidden layers also improves the speech
recognition accuracy, i.e., QoS level.

5. EVALUATION OF THE COORDINATION FRAMEWORK AND
TASK-ORIENTED SOFTWARE MANAGEMENT

In this section, we establish the efficacy of our framework in meeting required
goals and increasing system energy efficiency. We first discuss the experimental
setup and then present the experimental results.

5.1 Experimental Setup

To validate our goal-directed application adaptation framework, we used the
three applications described in Section 4. However, for brevity, we describe
the experimental setup using the video player application. We evaluated our
framework for 24 video clips and used each complete video clip as an adaptation
block. QoS adaptation is achieved through a change in the dithering mode. We
used an iPAQ HP H3870 (with Intel StrongARM microprocessor SA-1110 at
206 MHz, 64-MB DRAM and 32-MB flash), running under Familiar Linux,
as our evaluation platform. The iPAQ H3870 can use AC or DC power. The
battery that supplies the latter is the Danionics lithium-ion polymer battery
(#DLP 345794). Its capacity is 1400 mAH, and its voltage range is specified as
3.7 to 4.3 V. For our experiment, we used an initial energy value of 2876 J. As an
illustrative example, for a particular video clip (simpsons), the battery lasts 22
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Fig. 10. Power measurement setup.

iterations, when the video player is at the highest QoS level, and 32 iterations
at the lowest QoS level. This represents a 45.5% extension in battery lifetime.
We selected a small initial energy value for experimental convenience. When
extrapolated to the full capacity of the battery, we can run 179 iterations at the
highest QoS level and 261 iterations at the lowest QoS level.

Since the current advanced power management interface in Familiar Linux
can report residual battery capacity only at a very coarse-grained level (the
basic unit is 1%), we used an external power supply with the battery removed
to obtain the system energy dissipation (note that this measurement is done
only for validation purposes, the framework actually uses the software energy
macromodels described earlier for demand prediction).

For our experiments, we built a power measurement setup, as illustrated
in Figure 10. The measurement setup consists of a host computer running
certain data acquisition software such as Excel with Agilent IntuiLink tool bar
add-in for multimeters [Agilent], an IEEE488 GPIB PCI card for high-speed
data acquisition installed into the host machine, a GPIB cable connecting the
measurement instrument, an Agilent 34401A digital multimeter to the card,
iPAQ H3870, a small series resistor (Rs < 100 m�), and the DC power supply
(5 V).

By this approach [Farkas et al. 2000], what we measure directly is the voltage
across the sense resistor Rs, which is connected in series with the DC power
supply. The current consumption of the iPAQ system can then be computed
by dividing the voltage drop across the series resistor by the resistance value.
The resistance value is sufficiently small that it can be considered nonintru-
sive, i.e., the voltage drop on the iPAQ is approximately equal to the supply
voltage (Vdd = 5 V ). Thus, the instantaneous power consumption of the iPAQ
is:

Ps(t) = Vdd ∗ Vs(t)

Rs
(7)

The data-acquisition software, IntuiLink, adds a tool bar to Excel. After con-
figurations on the GPIB card and multimeter, each voltage value measured
by the multimeter is automatically logged into a spreadsheet. The GPIB card
enables the sampling rate of measurement to be as high as 1000 samples per
second. The add-in of Excel offers a sample rate around 12/s. After measure-
ment data are collected for a software program, we get the system power profile
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of the program running on the iPAQ. We identify the starting point (T1) and
finishing point (T2) of each program, and integrate the power consumption over
the execution time. Thus, the energy consumption value of the software pro-
gram is obtained, as shown in Equation (8). We can also sample the power value
points and the energy dissipation rate profile is drawn.

Es(t) =
∫ T2

T1

Ps(t)dt

=
n−1∑
i=0

Ps(ti) ∗ (ti+1 − ti) (8)

where t0=T1 and tn=T2 represent the starting and the finishing point of the
software program, respectively.

To evaluate our coordination framework, we designed several scenarios with
a new application joining the system that contains other concurrently running
applications. The priority of the new application and other existing applications
determines their coordination policy. The results are described next.

5.2 Experimental Results

In this section, we first present the experimental results on adaptation of single
applications, then we evaluate the coordination framework.

5.2.1 Adaptation of Single Applications. In our framework, when issuing
a service command, the user should provide the execution goal together with
the service name, and other service-specific parameters. For example, the typ-
ical video player service command looks like “service name=video goal=1400
priority=0 filelist=/home/user/playlist.” Here service refers to command
type, name indicates which service to call (the eligible service must be in the
registry), goal specifies the expected duration in seconds, and priority, the
urgency level. The mpeg player also needs the list of video files, which contains
the number of tasks n. Each user represents a client. The command is issued by
user in a text message and passed to the server side through the client–server
interface. When the server receives a command, it first parses the command.
If it is a service request, the coordinator on the server side determines the
application configuration (QoS level) and delivers it to the application.

Figure 11 shows the detailed result of an experiment with the goal set to
1400 s and for executing 24 video clips.2 The measured line in Figure 11a shows
how the battery energy supply changes over time, i.e., the energy-dissipation
rate of mpeg player. The Expected line connects the user-specified duration goal
point (1400,0) on the x axis and the initial energy point (0, 2876) on the y axis.
It represents the expected battery energy-dissipation rate to meet the duration
goal. We can see that the measured line tracks the expected line very well and
the goal is met with a battery residual energy of 42.7 J, which is only 1.5% of
the initial energy. It shows that our DSOM framework is not conservative at all

2Note in our experiments, the battery is removed from the PDA, the initial battery energy is set to

a fixed value in the DSOM framework and we measure the energy-dissipation rate.
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Table I. Knobs and Effects of Application Adaptation

Applications Tunable Resource Range of Possible

parameter variation energy saving (%)

Unsynchronized Dithering CPU time 1.34–24.93 ms

video player mode for dithering 30.2

Power 1.5–3.6 W

Speech Number of CPU time for 39.92–69.81 s 54.1

recognizer hidden layers recognition

Voice-over-IP Sampling rate Power 2.90–3.21 W 9.1

of audio device

for this case. The third line, Unmanaged, represents the energy-consumption
rate without DSOM. It starts from another initial energy value (3322.5 J) and
drains the battery when finished. It can be seen that, in this case, the system
needs an extra 446.5 J (15.5% of original battery residual energy 2876 J) of
energy to finish the task in 1561.2 s. Thus, without DSOM, the goal cannot be
satisfied.

Figure 11b shows how the software application adapts with and without
software management during execution. We consider four different QoS levels,
based on the dithering mode, as described earlier. Different video clips, even
at the same QoS level, may have different average power. Hence, we see very
frequent adaptation of the video player for clips from line w/ management.
In general, adaptations of separate adaptation blocks are independent of each
other. Thus, the user is not likely to be annoyed by the changes. The other line
w/o management shows that the application keeps running at the highest QoS
level, however, it takes longer to finish the list of tasks. We can conclude that
the video player that we are using is unsynchronized.

To evaluate the accuracy of our energy macromodel, we compared the esti-
mated and measured energy dissipation rates in Figure 11c. Our energy macro-
model predicts that the total energy consumption is 2871.9 J and the video
player runs for 1333.7 s. The estimation is very accurate, with the error in total
energy consumption being only 1.4% and the error in total execution time only
1.7%.

We performed similar experiments on the other two applications—speech
recognizer and voice-over-IP. Table I shows the tunable parameter we selected
for each application, the resource that changed under different modes, the range
of resource variation, and the possible energy saving for the same task from the
highest to the lowest QoS level. Note that the adaptation policy and goal for each
application differ slightly according to the associated variable resource. For the
voice-over-IP application, RAT, the goal is set to the expected conversation time.
Under the constraint of battery residual energy, we configure the appropriate
running environment for RAT, and launch it with the corresponding audio
device sampling rate. We have trained the speech recognizer with different
numbers of network layers and stored the network parameters into different
dictionary files. For the same set of utterances, the recognition time is shortened
greatly by using a smaller dictionary corresponding to fewer network layers.
Thus, the energy consumption is reduced greatly and the recognition rate is
increased. Our experimental results show that the applications can meet their
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user-specified goal only with goal-directed DSOM, and the battery utilization
can be improved greatly.

5.2.2 Coordination among Multiple Applications. We performed another
set of experiments to evaluate the efficacy of coordination among multiple ap-
plications. In our experiments, we turn off the iPAQ backlight, thus, the base
idle energy consumption of the system is a very small portion of the overall ap-
plication energy consumption. Therefore, we assume that the energy expended
to run two applications concurrently is equivalent to the sum of the energy
expended to sequentially run the applications.

The coordinator acts as a user-level coarse-grained scheduler. It is energy-
aware and enables multiple applications to run efficiently. It favors urgent
applications and prevents other low-priority applications from competing. We
perform two case studies to evaluate the efficacy of the coordinator.

I. Case study of a high-priority application joining the system with a low-
priority application. We first consider the following scenario. The user is
watching a video clip using the video player, which is a low-priority service.
In the middle, an urgent request comes for recognizing a set of speech utter-
ances. Figure 12 shows the experimental result under this scenario with system
coordination. Figure 12a shows the energy-dissipation rate. The starting and
finishing time points for the speech recognizer are also marked on the figure.
We can see from Figure 12b that the existing low-priority video player yields to
the new high-priority speech recognizer when the latter arrives at time 64.9 s.
Figure 12c shows that with coordination, the speech recognizer can finish under
the battery energy constraint. The video clip is not able to finish, even though
the video player resumes execution when the speech recognizer finishes. We
guarantee the execution of the more urgent application first.

If there is no coordination, multiple applications simultaneously compete
for the battery. Figure 13 represents the experimental results in this case.
Figure 13a shows the energy-dissipation rate and the starting point for the
speech recognizer. Because of competition from the existing video player appli-
cation, the speech recognizer does not finish, as shown in Figure 13c, neither
does the video player. We also notice that without coordination, the battery
drains faster, even though it starts with the same residual battery energy.

II. Case study of a low-priority application joining the system with a high-
priority application. We performed another similar experiment in which the
existing video player application is of high priority while the newly joining
speech recognizer is of low priority. When the speech recognizer joins the sys-
tem, the system knows the currently running QoS level of the video player
and its estimated energy from the energy macromodel. With coordination, the
system reserves the energy for the video player, thus executing the speech
recognizer at the fourth QoS level instead of first (the highest). Both the video
player and speech recognizer complete their execution. Figure 14 shows the
experimental results under this scenario. Figure 14a presents the energy-
dissipation rate. It shows that both the applications finish executing within
the battery energy constraint. Figure 14b indicates that execution of the
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Fig. 12. System coordination when a high-priority application joins the system.

existing high-priority application is not affected by the joining of the low-
priority application. Figure 14c shows that the newly joining application will
run at the minimum QoS level, since it needs to yield resources for the already
existing high-priority applications.

Without coordination, the speech recognizer checks the residual battery en-
ergy and views itself as the only one that is using the battery. Thus, it is executed
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Fig. 13. The case of a high-priority application joining the system without coordination.

at the highest QoS level, and competes more avariciously with the high-priority
application for the battery. Consequently, the battery drains faster and neither
of the two applications finishes execution. Figure 15 represents the experimen-
tal results in this case. Figure 15a shows the energy-dissipation rate and the
starting point for the speech recognizer. Figure 15b shows the execution state
of the already existing high-priority application video player. Figure 15c shows
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Fig. 14. System coordination when a low-priority application joins the system.

that the newly joining application of speech recognizer executes at the highest
QoS level.

These experiments show the necessity and efficacy of both coordination
among multiple applications and adaptation for each single application for mo-
bile computers.
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Fig. 15. The case of a low-priority application joining the system without coordination.

6. CONCLUSIONS

We have proposed and implemented a DSOM framework, which not only meets
user-specified goals under battery energy constraints, but also abides by the
user’s intention through the use of a user-specified priority. It is implemented
in the user space, with no changes needed in the underlying OS. It is also
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portable to any OS and mobile platform that is POSIX-compliant. It increases
the energy efficiency of the mobile computer system at the expense of accept-
able QoS degradation. It is complementary to other low-level energy efficiency
techniques (such as those at the OS and compiler levels, and DVFS, etc.), and
exploits the new concept of software low-power modes.

Our framework does have several limitations that inspire future research
work. It relies greatly on the application being adaptable. In practice, however,
we found many mobile applications have adaptable features, including the mo-
bile applications used in the article and other nonmultimedia applications, e.g.,
a web browser. In the future, adaptability could be built into the application
to further exploit our framework. Currently, for each adaptable application,
we need to derive the energy macromodel offline and embed the model in its
associated runtime library. Developing a unified low-level device-based or ar-
chitecture parameter-based energy macromodel will be a near future research
work. Future work will also focus on cross-layer adaptation, which will exploit
DVFS for each low-power mode as well, that is, both the resource demand and
supply can be scaled in an interdependent manner. For example, under different
dithering methods, the dithering time may vary and create different slacks in
a frame period, so that different frequencies/voltages can be used for the same
video clip under different modes. In such a case, the framework may be able to
direct application-specified information to the underlying OS and platform for
further energy savings.
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