
 

Abstract— Using cell phones as traffic probes is a promising 
Intelligent Transportation System technology. Compared with 
traditional traffic data collecting approaches, cellular probe 
has the advantage of the ready-to-use infrastructure and the 
wide coverage. This paper presents two Bayesian framework 
based traffic estimation models by the measurement of cell 
handoff data of floating vehicles. The first and the simpler 
model uses traffic speed as the only state variable. The 
second-order model, incorporating traffic volume as the second 
state variable, has a two-level architecture, where macroscopic 
states and microscopic states are connected by the process of 
state reconstruction. This mechanism makes it possible to 
realize high-order sparse-sampling traffic estimation. Due to 
the good performance on solving highly nonlinear estimation 
problems, Particle Filters are introduced to provide the 
approximation solution of traffic state estimation problems 
with system noise and measurement error. The performance 
evaluation and practical test of Particle Filters under different 
data sets are performed by numerical experiments. 

I. INTRODUCTION

IRELESS communication technologies, including 
GPS, WI-FI and cell phone etc., have been 

increasingly used for ITS applications for both 
infrastructure-based systems and vehicle-based systems for 
the past few years. An especially promising approach among 
them is the traffic probe based on cellular network (or mobile 
phone network) [1][2], which has two distinct advantages 
from the perspective of data acquisition. One is the cost 
effective way of implementation. Nearly no extra expensive 
infrastructure needs to be installed because all it needs are 
almost ready. The other is the coverage over a wide area that 
implies the ubiquitous usage. 

Basically there are two technical options to make traffic 
probes based on cell phone: handset-based solutions and 
network-based solutions [1][2]. The handset-based solutions 
rely on other additional technology, usually a GPS receiver. 
Although this approach can provide high location accuracy, a 
specially designed and expensive handset is needed which 
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will also increase the additional communication costs. On the 
opposite, the network-based solutions are a passive but 
intelligent way that only uses the data which has already 
taken place in the network, such as handoff time. Handoff is a 
mechanism that transfers the ongoing call from one cell to 
another when a cell phone moves through the coverage area 
of a cellular system [3]. Any vehicle with a cell phone may 
potentially act as a traffic probe and the average traffic speed 
can be derived from handoff data. This approach is appealing 
but few literatures have been published on the research of 
traffic estimation method using cell phone data [4]. 

 In order to make it easy for on-line implementation, 
researchers prefer to focus on macroscopic traffic models 
which represent the average traffic behavior using 
aggregated variables. Bayesian frameworks [5] are usually 
used to cope with those non-linear models with uncertainty. 
According to Bayesian theory all information about the states 
of interest can be obtained from the posterior state 
distribution [5]. Because Bayesian estimation problem cannot 
be solved analytically in general, approximation approaches 
have been proposed. A recently developed, powerful and 
scalable approximation approach is Particle Filter or 
Sequential Monte Carlo Method [6] [7]. It computes the 
posterior density function of the state by an empirical 
histogram obtained by a Monte Carlo simulation. It doesn’t 
need to be based on the linearization of the state and the 
observation models and the assumption of Gaussian noises. 
In [8], a solution of highway traffic estimation is proposed 
using a sequential Monte Carlo algorithm, based on 
first-order traffic models (only traffic density is considered). 
In [9], the freeway traffic is described by a second-order 
model where both traffic density and speed are estimated. In 
this paper, we first investigate a simple first-order traffic 
estimation model and then a two-level second-order model, 
partly based on the framework in [9], both of which are 
suitable for the traffic on freeways or urban expressways with 
few interchanges or intersections. 

II. PROBLEM FORMULATION

The mobile phone system (or cellular network) comprises 
handsets (mobile stations, or cell phones) and base stations. 
Given a regular spacing of base stations, the boundary of the 
areas covered by each base station are hexagonally shaped 
and are termed a cell (see Figure 1). Different cell-types can 
be classified according to their coverage dimension [10]. 
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Handsets monitor the M (in GSM, M=5) strongest signals 
and report regularly the measurements to the network. Based 
on the measurements, the network centrally transfers 
connections from one base station to another (handoff) when 
the communicating handset is moving during the service 
session. We assume that only micro-cells (with dimension of 
0.1-1 km) of similar size are discussed in this paper. 

Most of the handoff algorithms are based on signal level 
measurement. A handoff will occur when the averaged signal 
level from new base station exceeds that from current one 
plus a hysteretic level [4][11]. 

Due to the existence of noise in signal measurement, the 
positions of handoff (or handoff points) float randomly 
according to some probabilistic distribution. But we are able 
to compute where the mean handoff points are if we obtain 
their distribution based on numerous statistical experiments. 

Here we can build a simplified one-dimension traffic 
model based on the statistics of cell phone handoffs. Assume 
the object we are interested in is a segment of a freeway or an 

urban expressway that doesn’t have many intersections and 
in/out ramps and is full covered by base station signals. When 
a vehicle with a cell phone in communication drives along the 
freeway, it will traverse the cell boundaries frequently and 
handoff operations will occur again and again. Here we 
concentrate our attention on the traffic flows in a 
one-dimension space. As it can be observed in Figure 2, the 

road segment can be modeled as a straight line, divided into 
several smaller sections which are connected one by one and 
separated by the mean handoff points. A four-tuple can be 
used to describe the data structure of each measurement of 
handoffs.  

),,,( tofromhandoffcellphone cellcelltIDH =  (1) 

We call the two consecutive handoffs of the same cell 
phone a handoff pair.  

III. TRAFFIC MODEL

The traffic flow in this paper is modeled as a stochastic 
dynamic system with discrete-time states. Usually we choose 
the average traffic speed and the number of vehicles in 
handoff links (in short, links, in the following part of the 
paper) as global state variables. For link i, i=1,…,n, the state 

is T
kikiki vNx },{ ,,, = , where kiN ,  is the number of 

vehicles in  section i at sampling time kt , and kiv ,  is their 

average speed. Here state vector },,,{ ,,,1
T

kn
T

kx
T

kk xxxx =  is 

sampled at time <<<< kttt 21 .

The generic model of system state evolution of discrete 
time estimation problem is as follows 

),(1 kkkk wxfx =+ (2)

where fk is the system transition function and wk, the system 
noise, is a zero mean white-noise sequence independent of 
past  and current states. The probability density function 
(PDF) of wk is assumed to be known. The measurement yk is 
related to the states via observation equation 

),( kkkk xhy η=  (3) 

where hk is the measurement function and kη , the 

measurement error, is another zero mean white-noise 
sequence of known PDF, independent of past and present 
states and system noise. 

A. First-order Traffic Model  

For simplicity we consider traffic speed as the only state 
variable here. The system model can be written as 

kikikikikikikiki wvvvv ,,1,,,,1,1, +++= +−+ γβα  (4) 

k
avg
kiki vy η+= ,, ni ,,2,1= (5)

where  

=

−+ −=
kiM

j
jji

avg
ki ttLv

,

1
, )/(  (6) 

is the average measured traffic speed in time period k.

kiM ,  is the amount of observed handoff pairs about link i 

in time period k. iL  is the length of link i between two mean 

handoff points. −
jt  is the observed first handoff time from 

Fig. 1.  Vehicle with an ongoing cell phone call traversing handoff areas 

Fig. 2.  Simplified one-dimension traffic model composed of handoff links 

1048

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 13:09 from IEEE Xplore.  Restrictions apply.



link i-1 to link i and +
jt  is the observed second handoff time 

from link i to link i+1, −+ > jj tt  and both of them buildup the 

handoff pair j. ki,α , ki,β ,and ki,γ  are coefficients used to 

weigh how the average traffic speed in neighboring links has 
an impact on the average speed in current link. 

While road traffic is in a stable pattern, we can set all 

coefficients ki,α , ki,β , ki,γ  as constants , , , or let them 

satisfy ( but not necessarily ) 1,,, =++ kikiki γβα .

From (4) and (5), we see that the first-order traffic model is 
linear so that either a Kalman Filter or a Particle Filter is able 
to be built in order to estimate the system states without 
difficulty.  

B. Second-order Traffic Model   

If we incorporate traffic volume as the second state variable, 
we can build a second-order traffic model. There are two 
options to choose the second state variable:  the number of 

vehicles kiN , , present in link i at sample k, or kiQ , , the 

number of vehicles crossing the cell boundary from link i to 
link i+1, during the time interval k. According to the 
definition, these two variables always satisfy 

kikikiki QQNN ,,1,1, −+= −+ , for all i,k. Hence each of 

them can be transformed into the other despite which of them 
will be chosen.  

When we use cell phones as traffic probe, the frequency of 
appearance of valid raw data is much lower than using loop 
detector data which is a main difficulty for estimation. One of 
the reasons is that for safety motives, not everyone is willing 
to use a cell phone when driving and also only a small part of 
passengers will get an incoming call when they are on the 
road. Another reason is that we only hope an ongoing cell 
phone call lasting long enough to traverse two continuous cell 
borders, i.e. constructing a handoff pair, to get a set of valid 
data. Obviously, handoff data satisfying such conditions is 
sparse. Besides, the underlying geographic uncertainty 
between road networks and cellular networks causes the 
locations of handoff points and the lengths of handoff links to 
be very irregular. As a result, missing data is a common 
problem during data pre-processing. We call traffic 
estimation based on cellular probe as sparse-sampling traffic 
estimation and call traffic estimation based on loop detection 
as dense-sampling traffic estimation. Next we will present a 
two-level second-order traffic model which is suitable for 
sparse-sampling traffic estimation. 

In the upper level, or macroscopic level, system state 
equations are as follows, 

1
,

1
,1, ki

t
tiki wUQ

k

+=
=

+

τ

 (7) 

2
,

1
,1,

1
ki

T

t
ti

k
ki wvV

k

+=
=

+ τ
 (8) 

Kkni ,...,1;,...,1 ==
And measurement equations in macroscopic level are, 

1
,,

,

1
,

,
1

ki
V

L

ki
ki

ki
ki

i

eQy η
λ

μ

+⋅=
−

 (9) 

2
,,

2
, kikiki Vy η+=  (10) 

In fact, system equations (7) and (8) connect macroscopic 
states with microscopic states. k is a macroscopic time 
interval, (usually not equally long, form 5 to 30 minutes), 

which can be divided into kτ  much smaller intervals (which 

are usually equally long, such as 10 seconds). kiQ ,  is the 

number of vehicles crossing the handoff point, leaving link i

and entering link i+1, during the interval ],[ 1+kk tt or during 

time period k (in short, we call kiQ ,  the out flow of link i

during time period k). tiU ,  is the microscopic out flow 

variable of link i in time interval t. kiV ,  represents the 

average traffic speed during time period k and tiv ,  represents 

the average speed in time interval t, both of link i. Let Tk

denote the length of time period k and let tΔ denote the 

length of time interval t, both of which satisfy kk Tt =Δ⋅τ .

In measurement equation (9), Li is the length of handoff 

link i and μ  is a positive constant and ki,λ  is a scale 

coefficient which presents how many percent in the running 
vehicles are using cell phones. The measurement model 
represented by (9) is designed according to following 
observations. First, the length of a call usually obeys an 
exponential distribution. Second, the longer a handoff link is, 
the fewer the valid handoff pair data can be caught. Third, the 
faster the vehicles run, the more the possible two continuous 

handoffs could happen. 1
,kiy  is the measured value of valid 

handoff pairs happened in link i. 2
,kiy  is the measured value 

of kiV , . 1
,kiη , 2

,kiη  are measurement errors which are both 

zero-mean white noises. 
In the lower lever, or microscopic lever, the state evolution 

is governed by following equations, 

titititi UUNN ,,1,1, −+= −+  (11) 

3
,1,

int
1,1, )()1( ti

antic
ti

eerm
titi wvvv +−+= +++ ρθθ  (12) 

where  

..

0/))(( 1,1,,,,,1,1int
1, wo

N

v

NQNvQv
v ti

free

titititititierm
ti

≠−+
= ++−−

+
(13)

and 
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1,11,1, )1( ++++ −+= titi
antic
ti ρσσρρ  (14) 

Equation (11) expresses the evolution of tiN ,  based on the 

conservation of vehicles, where tiU ,  is the out flow of link i

in time interval t. erm
tiv int

1, +  is the intermediate speed taking 

convection into account. Based on the assumption that 
drivers do not change their speed instantaneously due to 
inertia, it expresses the speed update if all vehicles would 

maintain their speed. antic
ti 1, +ρ  is called anticipated traffic 

density which drivers see at some distance in front of their 

vehicles, and 1, +tiρ  can be computed via  following equation  

niLN ititi ,2,1,,, == ρ  (15) 

Here we assume all the links along the road have the same 
number of lanes. The coefficient ]1,0[∈σ  weighs how far 

ahead the drivers are looking in their anticipation. The 

non-linear function )(ρev  expresses the average 

equilibrium speed corresponding to density ρ  which can be 

computed according to the following empirical equation.  

⋅
≤⋅

= −−

−

otherwiseev

ifev
v

crit

crit

free

critfreee

)(5.0

)/(5.0 5.3

)( ρρ

ρρ ρρρ  (16) 

where critρ  denotes the critical density. 

To summarize, the right-hand side of speed state equation 
(12) is the sum of three items. The first item reflects the 
portion of vehicles keeping their current speed due to inertia. 
The second item reflects the portion where drivers 
aggressively adjust their speed to changing traffic conditions. 

]1,0[∈θ  is the weighing coefficient between the two items. 

The third item, noise 3
,tiw , reflects the unpredictable behavior 

of drivers and modeling errors.  

The evolution of tiU ,  is dominated by sending and 

receiving functions [9] 

),min( 1,,, += tititi RSU  (17) 

Among the values of the above equation, the sending 
function is 

),max( min,
,

4
,

,
,,

i

out
titi

i

ti
titi L

tv
Nw

L

tv
NS

Δ
+

Δ
=  (18) 

and the receiving function is 

titiliti NUAlLR ,1,111, / ++++ −+=  (19) 

The sending function Si,t  in (18) is a random variable 
expressing how many among the Ni,t vehicles in link i at t are 

at a distance less than tv ti Δ,  from the handoff point between 

link i and link i+1. min,outv  denotes the minimum outflow 

speed. The receiving function (19) expresses the maximum 

number of vehicles that are allowed to enter link i+1 at the 
next time instant t+1. The first item of the right-hand side of 
(19) actually denotes the maximum number of vehicles link 
i+1 can hold simultaneously. l  is the number of lanes all 

long the road and lA  is the average length of vehicles plus a 

safe distance. 
The state evolution of microscopic model described by (11) 

to (19) usually performs well on dense-sampling traffic 
estimation problems. The computing of sending and 
receiving functions is the core idea of this model. From (18) 

we can see that only when iti Ltv <Δ, , the sending function 

makes sense. That needs tΔ  be very short because the 
handoff link length in urban area is usually from several 
hundred meters to less than 100 meters. So the microscopic 
model couldn’t be used directly on cellular probe based traffic 
estimation. Hence, the idea of designing a two-level 
estimation model is coming out. The measurement all 
happens in macroscopic level and the two measurable values 
are the number of valid handoff pairs and the average speed 
derived from all handoff pair data during a not-very-short 

time period (for collecting enough data). The predictions of 
new macroscopic states are based on the computing of 
microscopic states according to (7) and (8). Upon obtaining 
the new measured value, the macroscopic states get updated 
finally. Then the system will switch to microscopic level 
again and the whole process continues shown as Figure 3. 

IV. DESIGN OF PARTICLE FILTER

The core idea of Bayesian estimation is to construct the 

conditional PDF of the current state kx , given all the 

available information: )|( kk Yxp . Here the available 

information at time step k is the set of 

measurements },,1,{ kjyY jk == . In principle, this 

PDF may be obtained recursively in two stages: prediction 
and update [6][7]. Suppose that the required PDF 

Fig. 3.  State transition and reconstruction of two-level second-order traffic 
model
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)|( 11 −− kk Yxp  is available.  

Prediction: 

−−−−− = 11111 )|()|()|( kkkkkkk dxYxpxxpYxp  (20) 

Updating: 

)|(

)|()|(
)|(

1

1

−

−=
kk

kkkk
kk Yyp

Yxpxyp
Yxp  (21) 

where )|( 1−kk Yyp  is a normalized constant.  

We assume that the PDFs of independent noise term in 
generic system equation (2) and measurement equation (3) 

are )( kwp  and )( kp η . So the probability model of system 

evolution )|( 1−kk xxp , which is a Markov model, can be 

defined by the system equation and the known statistics of wk.

−−−−−− −= 111111 )()),(()|( kkkkkkkk dwwpwxfxxxp δ
 (22) 

Also, )|( kk xyp  is defined by the measurement equation 

and the known statistics of kη .

−= kkkkkkkk dpxhyxyp ηηηδ )()),(()|(  (23) 

where )(⋅δ  is the Dirac delta function.  

Usually, there is no simple analytical solution for 

)|( kk Yxp  due to the difficulty of computing complex 

high-dimension integrals in (20), (22) and (23). The particle 
filter technique can provide an approximate solution to the 
discrete-time recursive updating of the posterior PDF 

)|( kk Yxp  by the empirical histogram corresponding to a 

collection of M particles },,1,{ )( Mlx l
k = .

=
−≈

M

l

l
kk

l
kkk xxqYxp

1

)()( )()|(ˆ δ (24)

where )(⋅δ  is Dirac delta function and M is the number of 

random samples or particles. The particles )(l
kx  and weights 

)(l
kq  are recursively updated as follows, 

Mlxxpx l
kk

l
k ,,1),|(~ )(

1
)( =−  (25) 

Ml
qxyp

qxyp
q M

j

j
k

j
kk

l
k

l
kkl

k ,...,1,
)|(

)|(

1

)(
1

)(

)(
1

)(
)( ==

= −

−  (26) 

The implementation of the particle filter is described as 
follows.  

Step1: Initialization 

For Ml ,...,1= , sample )(~ 0
)(

0 xpx l ,

Mq l /1)(
0 =  and set k = 1.  

Step2: Prediction 

For Ml ,...,1= , sample )|(~ )(
1

)( l
kk

l
k xxpx −

Step3: Importance evaluation 
On receiving a new measurement, compute the 
normalized weights, 

= −−= M

j

j
k

j
kk

l
kkk

l
k qxypqxypq

1

)(
1

)()(
1

)( )|(/))|(( ,

Ml ,...,1= , where )|( )(l
kk xyp  can be described 

by observation equation (5) for first-order model or 
(9),(10) for second-order model.  

Step4: Selection   

Multiple / Suppress M particles }{ )(l
kx  according to 

their importance weights in order to obtain new M
unweighted particles still having an approximate 

distribution of )|( kk Yxp . Here we choose residual 

resampling algorithm(7]. 
Step5: Output  

According to (18), we can compute the approximate 
posterior distribution based on the samples generated 
on previous step 3. Also the posterior mean and 
covariance can be computed as follows. 

=
==

M

l

l
kklk x

M
YxEx

1

)(1
)|(ˆ  (27) 

=
−−

−
=

M

l

T
k

l
kk

l
kkk xxxx

M
YxV

1

)()( )ˆ)(ˆ(
1

1
)|(

 (28) 
Step6: Let k = k +1 and return to step 2. 

V. NUMERICAL EXPERIMENTS

To check the capability of particle filters to make the traffic 
state estimation, we use two testing data sets which are 
collected from typical real mobile network. The first is a 15 
hour long (8:00am to 11:00pm) data set based on a segment 
of urban expressway including three handoff links, where the 
macroscopic time interval is 30 minutes and L= (0.558, 0.411, 
0.242)T,[km]. The second data set is 24 hours long based on 
another 3-handoff-link expressway segment, where the 
macroscopic time interval is 5 minutes and L= (0.284 0.881 
0.272)T,[km]. 

Figure 4 shows the average speed estimation result on 
dataset one. We can see that the first-order model tracks the 
noisy observation value quickly and it is hardly to tell apart 
them in most of the time. The output of the second-order 
model is different, always keeping a gap with observation 
value, but they follow similar changing tendency at most time 
periods except in the situation of link 2. 

Figure 5 shows the outflow estimation result of the 
second-order model. The curve in black color is the derived 
outflow value according to equation (9). We can see that the 
evolving tendencies of the estimated and derived value are 
consistent, but the estimated flow values are 50% to 100% 
greater than derived value in link 3 and 4. The accumulated 
error during every 30-minutes-long process of microscopic 
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state evolution may be one reason and the lack of field data to 
calibrate the parameters in (9) is the another reason. 

Figure 6 and 7 show the state estimation result of the 
second-order model based on dataset two. Because the 
macroscopic time interval here decreases to 5 minutes, the 
number of valid observed date in each interval also decreases. 
Here we use some date pre-processing method to interpolate 
missing data. It can be seen that the volume estimation tracks 
the observation date well but the speed estimation still has 
fairly large error. 

VI. CONCLUSION 

The aim of this paper is to introduce an approach of traffic 
state estimation using handoff data of cell phones in floating 
vehicles. Two models for traffic state estimation were 
developed based on Bayesian estimation theory. The 
two-level structure of the second-order model is designed to 
adapt the fact of cellular handoff probe as one kind of 
sparse-sampling traffic estimation. Both models were 
implemented by particle filters. Numerical experiments show 
the primal comparison result between estimated state and 
noisy observations. The accuracy of particle filter needs to be 

improved in the future research by parameter adjustments 
and calibrations incorporating other data sources such as loop 
data. 
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