
A System for Determining Indoor Air Quality from Images 

of an Air Sensor Captured on Cell Phones

Kelsey Whitesell 

Center for Embedded Networked 
Sensing 

UCLA 3563 Boelter Hall 
Los Angeles, CA 90095-1596 

(310) 206-2476 

Kelsey.whitesell@colorado.edu 

Brendan Kutler 

Center for Embedded Networked Sensing 
UCLA 3563 Boelter Hall 

Los Angeles, CA 90095-1596 
(310) 206-2476 

newruralsociety@gmail.com 

Nithya Ramanathan, 
Deborah Estrin 

Center for Embedded 
Networked Sensing 

UCLA 3563 Boelter Hall 
Los Angeles, CA 90095-1596 

(310) 206-2476 

nithya@cs.ucla.edu, 
destrin@cs.ucla.edu 

ABSTRACT 

We have designed and implemented a system that analyzes 

images of air sensors taken on cell phones and extracts indoor 

air pollution information by comparing the sensor to a 

calibrated color chart. This system will be deployed with 

Project Surya, a pilot project of the UN Environmental 

Program that aims to replace traditional cooking methods 

with clean cooking technology in several rural Indian 

villages. In order to evaluate the effectiveness of the cooking 

technology at reducing indoor pollution, several hundred 

homes will receive a special air sensor that changes 

brightness based on the concentration of air pollution. Our 

system is capable of automatically getting data from multiple 

sensors each day by analyzing photographs of them. In order 

to operate in the presence of noise and inconsistent lighting 

conditions, our system employs a median sensor, finds the 

light intensity gradient across images, and calibrates the 

images if possible. We used a GVF active contour 

segmentation algorithm that can segment the two objects in 

the images (the sensor and the color chart) followed by a 

mode brightness matching algorithm to match the sensor and 

color chart. We tested our system by comparing results of 

manual analysis of seven different sensors to results obtained 

using our system. In these tests, our system was shown to 

match the sensor to a color on the chart with a maximum 

discrepancy of 1 bar on the color chart from the average 

result of manual analysis, with an average deviance of .406 of 

a bar. 

 

 

 

 

 

 

Categories and Subject Descriptors 

D.2.10[Software Engineering]: Design – Methodologies; 

I.4.6[Image Processing and Computer Vision]: 

Segmentation – Region growing, partitioning; 

I.4.8J.m[Computer Applications]: Miscellaneous 

General Terms 

Algorithms, Measurement, Performance, Design, Reliability,  

Keywords: cell phones, image analysis, calibration, active 

contour segmentation, automation, air sensors 

1.I(TRODUCTIO( 

Project Surya plans to deploy clean-cooking technology in an 

attempt to reduce air pollution in rural Indian homes. Most 

stoves currently used in rural India burn biomass, like wood, 

which release harmful pollutants. Surya focuses on black 

carbon, commonly known as soot, because of its immediate, 

negative impact on health and climate [4]. 

In order to gage the effectiveness of their cookers, climate 

scientists at Project Surya have designed a gray, chemical 

sensor that changes brightness depending on the 

concentration of black carbons (BCs) in the air. When 

implemented, the sensor will be attached to a battery-powered 

pump that draws air through the sensor [4]. In this paper, this 

sensor will be referred to as the sensor to avoid confusing it 

with image sensors. Project Surya has also designed a 

calibrated grayscale color chart with of nine bars. Each bar is 

a different brightness and corresponds to a different BC 

concentration. Thus, BC concentration can be determined by 

matching one of the bars on the chart to the brightness of the 

sensor. The color chart and several sample sensors that have 

been removed from the pump are shown in Figure 1.   

Matching the brightness of a sensor to a color chart would 

usually be done manually by a person. However, Project 

Surya’s operations will be large, deploying cookers in 6,500 

homes in the pilot phase alone [1]. Furthermore, every day  



 

 

 

data must be extracted from the sensors and the sensors 

replaced. Relying on people to read the sensors is fraught 

with problems: a high probability that someone would forget 

to record data or replace the sensor, results biased by local 

lighting conditions, or failure to account for certain 

conditions, such as light variation and browning (see Section 

2.2). 

We propose a robust image analysis system to collect 

accurate data from the sensors. Automated computer systems 

are amenable to matching since this task is tedious and 

objective.  Our system automatically compares the brightness 

of the sensor to the co-located color chart in an image and 

outputs the BC concentration.  In our system, brightness 

refers to pixel brightness, or the average of the RGB pixel 

values. Images will be uploaded from N80 or N95 cell 

phones to a central server, where the analysis will be 

performed. All raw data and the results of analysis will be 

stored in a central database.  

Our system has to deal with a number of faults introduced by 

the uncertain deployment environment. Our primary goal was 

to design the system to either fix or register all faults and 

delivering straightforward, accurate output. Steps getting 

accurate output from this system include assessing image 

quality, sensoring out noise, and calibrating images to 

account for lighting conditions. Noise is further discussed in 

Section 2.2. Inconsistent lighting conditions within images 

can easily affect perceived brightness, the only quality 

available to use when matching the sensor to a grayscale 

color chart.  Variation in lighting conditions between images 

is not a problem because the sensor and the color chart are 

always to be photographed in the same frame. Within 

individual images, the system must determine how light 

varies across the image. Variations can include light fading 

across the image, concentrated sunlight, or the camera’s flash, 

which can discolor images if the camera is held too close to 

the sensor.  Our system determines inconsistent lighting 

across images and adjusts the images so that the ambient light 

across the sensor is the same as that across the color chart. 

In situations where the image quality is too compromised, the 

image is discarded and the participant is requested to take 

another image. Our system is also robust to intermittent 

Internet connections.  

2.METHODS A(D DESIG( 

Remote analysis of the air sensor begins with a resident of a 

home containing a sensor taking a picture of the sensor and 

color chart in the same frame.  If network connectivity is 

available, the phone uploads the image to the database. We 

used SensorBase, an online database for the Center of 

Embedded Networked Sensing (CENS) at UCLA.  A daemon 

queries SensorBase every three hours and analyzes up to 

1221 images. Query period and restraints on the number of 

images accepted during each period are discussed in Section 

3.2. 

For each image uploaded to the database, image quality is 

assessed, and the image is calibrated and segmented. Finally, 

the brightness of the sensor is matched to the color chart. The 

original image, any modifications or errors, and the results of 

the analysis are uploaded to SensorBase. An SMS message is 

sent back to the participant with information on pollution in 

their home [5].  The methods used to accomplish each of 

these steps are detailed below. 

2.1Segmentation  

Our system uses a GVF active contour, or snake, to identify 

the sensor and color chart. We considered several different 

algorithms. Normalized cuts depend too heavily on choice 

of parameters to be totally effective in automated systems. 

GVF active contours, which are based on models of 

physical forces called Gradient Vector Fields (GVF) have 

been adapted to successfully segment multiple objects 

without requiring manual input [8],[9]. Our system uses an 

automated version of the deformable, GVF snake model 

developed by C. Xu and J.L. Prince [9]. This method 

segments the color chart into separate bars, returning 

mathematical definitions of the nine bars on the scale. This 

mathematical definition is a list of (x,y) points in the image 

that bound each object.  

We are currently looking to reduce the time to run of our 

segmentation algorithm and obtain a more easily parse able 

output by  our system’s segmentation by coupling the GVF 

active contour with algorithms in python from Eric 

Debreuve’s Matlab’s Active Contour Toolbox. The most 

important change would be using a blind “uniform” 

initialization that involves initializing multiple contours and 

deforming them into separate objects [10].  

2.2 Image Quality Analysis and Handling of 

Low-Quality Images 

When an image is uploaded to the server, the system 

processes it to check for problems and fixes any faults 

possible. It begins by correcting discolored images. We 

found that discoloration occurs when the cell phone camera 

flash floods the image. This phenomenon was observed 

when the cell phone camera was held too close to the 

sensor and chart. We found that this discoloration was 

fairly uniform across each image, so that the brightness of 

Figure1. A set of sample sensors and the color chart 

shown after the median filter has been applied 



the chart and the senor were affected to the same degree, 

negating the need for calibration. Instead, our system 

simply converts discolored images to grayscale and 

continues analysis.  

Noise was found to be a problem in several images. Noise 

included random specs on the image, caused by dust, dirt, 

or small bugs settling on the sensor. In order to remove 

noise from an image, the system applies a median filter 

from the Python Imaging Library[6]. The filter size is nine. 

This means the sensor sensors using the median of the 

pixels in a 9X9 neighborhood around each pixel. This size 

was chosen because we found it filtered the same amount 

of noise as larger sizes while requiring less time to run. 

This filter effectively eliminated noise except in cases 

where the noise occupied more than 15 percent of the 

image. After receiving data from Surya’s pilot program, we 

plan to develop a common noise model  and examine how 

well our system eliminates noise following that model. 

The system also checks the image resolution, discarding 

images with a resolution of less than .25 megapixels. This 

number was chosen based on the minimum number of 

pixels needed to accurately calculate mode brightness, 

2500 square pixels(see Section 3.2), and the minimum 

percentage of the image that the sensor is likely to occupy. 

We predicted minimum percent occupancy by having six 

people photograph a sample sensor and color chart as if 

they were participating in Surya’s pilot study. In these 

photographs, the sensor never occupied less than ten 

percent of the entire image. This implies that the image 

must have a resolution of at least .25 Mpixels in order to 

obtain an accurate result even when the sensor occupies 

only ten percent of the image.  

To account for variable lighting conditions, our system 

finds the light intensity gradient function, an expression of 

how pixel brightness is changing across the image. This 

gradient reflects how the ambient light changes across the 

image. We calculate light intensity gradient in the 

horizontal and vertical directions by taking the partial 

derivatives of an interpolated function, L(x,y), of pixel 

brightness across the image. The brightness function is 

interpolated using the SciPy library for python. There are 

three cases: 1) the gradient is always zero, 2) the gradient is 

never zero, and 3) the gradient is zero for a specified region 

surrounding the sensor and the color chart. Only in the third 

case are the images able to be calibrated. 

If  and  equal to zero over the entire image, the image 

is entirely one brightness. Such images cannot be analyzed 

because it is impossible to differentiate between objects in 

the image. 

If  and  are not zero over the entire image, our system 

might be able to calibrate the image. Calibration involves 

tweaking the brightness of the sensor until it is as if the 

sensor was experiencing the same ambient lighting 

conditions as the color chart when the image was captured. 

This is achieved using the brightness of a set region R 

surrounding the color chart as a “base brightness,” Bb. Let d 

be the difference between the Bb and the brightness of the 

sensor in the image. It then follows that if the brightness 

surrounding the color chart in region R was the same as Bb . 

as would the case if the ambient lighting conditions were 

the same across the sensor and the color chart, the 

brightness of each bar on the chart would be its brightness 

in the image plus d.  This calibration algorithm was used 

because of its straightforwardness and low computational 

demands. A more complicated algorithm is not needed for 

images containing such simple shapes.  

If  and   are never zero across the image, ambient 

lighting conditions are variable across the entirely image. 

This renders the above calibration impossible, because 

there is no region R around the sensor for which brightness 

is constant. However, if  and   are zero in region R, then 

lightning conditions are constant in R, Br can be calculated, 

and the image can be calibrated as described above. In our 

system, R has a width of 50 pixels. The reasons for 

choosing this value are given in Section 3.2.   

Using the region around the chart as the calibration base 

standard eliminates allows the system to calibrate only the 

single sensor object rather than every bar on the color chart. 

Our system does not address several faults we are aware of. 

As can be seen in Figure 1, some wrinkles in the material 

the sensor is made are still visually present after the median 

sensor is applied. Wrinkles in the paper cast shadows and 

cause the system to register a light intensity gradient, 

rendering it unable to calibrate the image if the wrinkles 

exist in R. Currently, our system has no computational way 

to account for these wrinkles.   

Another problem not addressed is browning. Browning of 

the sensor has been observed when there is an excessive 

amount of dirt or dust in the air. We do not address this 

problem because Project Surya is currently looking to 

develop a physical mechanism to remove brown particles 

[4].   

Lastly, our system assumes that the image contains both the 

sensor and the color chart. If it does not, the system will try 

to match the sensor to a random spot in the image. In most 

cases, this could be fixed by adding a program that 

registers an error if two objects are not returned from 

segmentation.  

2.3 Brightness Matching 

Once the quality of the image has been verified and the any 

necessary calibration performed, the sensor brightness can 



be matched to the color chart. We chose to match the mode 

brightness of a 50x50 pixel region (see Section 3.2) within 

the sensor to the mode brightness of each bar on chart. The 

mode was chosen over the average or median brightness in 

case random noise is not completely eliminated by the 

median filter, as was found to occur for images where the 

sensor occupies a high percent of the image.   

In order to match the brightness of the sensor to the chart, 

the system first needs to identify the separate bars in the 

color chart and the corresponding BC concentration. The 

system obtains only coordinates defining the boundaries of 

each bar during the segmentation phase. Because of this, we 

chose a boundary-based shape orientation algorithm 

developed by Jovisa Zunic and Milos Stojmenovic to orient 

each bar on the color chart. This method has been shown to 

 

be effective at orienting polygonal shape when only the 

boundary conditions are known.   

After the individual bars oriented, the system finds the bar 

with the smallest minimum x-coordinate. If all the bars have 

the same minimum x-coordinate, then the chart is 

positioned vertically and the mode brightness of the bar 

with the smallest minimum y-coordinate is calculated. 

Because the orientation of the chart is straight and so 

limited to the arrangements where inner bars can never be 

further to the left than the end bars, that bar should be either 

the black bar or the white bar. This assumes that the sensor 

is left of the sensor in the image. The brightness is 

calculated for the pixels within the bounds defining that 

initial bar. If the bar is black (brightness ≈ 0), that initial bar 

is bar 9 (Figure 2). If the bar is white (brightness ≈ 255), 

the bar is bar 0. The numbers the other bars are found using 

the location and number of the initial bar. The brightness 

within the bounds of each bar is then measured and 

associated with the correct number.   

Once the chart is oriented, the mode brightness of sensor 

can be matched to a bar on the color chart using a simple 

comparison loop. When a match is found, information 

about what that bar indicates about the BC concentration is 

recorded in SensorBase and sent to the cell phone. 

2.4 Implementation 

Our system was written entirely in Python because Nokia 

N80 and N95 cell phones can be programmed using Pys60; 

thus, we were able to run code that uploads images to the 

SensorBase on the phone. The code currently on the server 

could also easily be translated onto the phone if such a 

transfer were found to be desirable.  

3.EVALUATIO( 

3.1 Resource Utilization 

Our system normally takes 8.842 seconds to analyze one 

image, but can take up 2.75 minutes to run if analyzing high 

resolution images with a slow server response. Run time for 

each individual process is detailed in Table 2.  

Table 2. Time to Run 
Process Time to Run (seconds) 

Sensorbase Image Slogging Normal Response: 0.135  

with slow server response: 24.118  

Segmentation (Low Res) 4.142  

Snake Analysis (High Res) 136.762  

Other Image Processing 4.565  

3.2 Sensitivity Analysis 

 Table 1 lists the adjustable parameters in our system. 

∆ is bounded at 1221because best run time is 8.842 

seconds, so server analyzing images after three hours when 

new images are uploaded if ∆ is greater than 1221 and 

become backlogged. This means that our current system can 

analyze up to 9,768 images per day. This meets Surya’s 

need to analyze 6,500 images per day. However, a slowest 

run time it cannot analyze more than 480 images per day. 

The three hour query period can be adjusted as desired as 

long as time to run is taken into account to avoid backlog.  

Our ITER1 and ITER2 values are higher than those chosen 

by Xu and Prince in their implementation of the GVF snake 

because pictures taken on N80 and N95 cell phones have a 

higher resolution than those tested by Xu and Prince and so 

require more iterations to complete the segmentation 

process. The current ITER1 and ITER2 properly segment a 

.25Mpixel image. ITER1 and ITER2 must be increased 

proportionally to the resolution of the image. R and r are set 

at 50 pixels because our tests showed that r can be between 

50 and 500 pixels for images with a maximum deviation in 

the mode brightness of four units. Such a small deviation 

would not affect which bar our system matched to the 

sensor because the difference in brightness between bars on 

the color chart is always greater than 4. R may be increased 

so long as the light intensity gradient is still zero 

Parameter  Description Sub-system  Current Value 

∆ # of images processed in 

each query period 

Image 

Slogging  

1221 

ITER1 iterations computed for 

the snake deformation 

Segmentation 8 

ITER2 Iterations  computed for 

the GVF 

Segmentation  100  

R Radius of region used for 

calibration  

calibration 50 pixels 

 

r 

Dimension of the region 

used to calculate sensor 

brightness 

brightness 

matching 

50 pixels 

Table 1. System Parameters 



everywhere within R. r can be as large as the sensor radius 

and still return accurate results. We also found that the 

shape of the sensor region analyzed does not affect results.  

3.3 Accuracy 

Accuracy was determined by comparing results of our 

system to those obtained when six people visually matched 

the chart to a sensor. It is difficult to say if human vision is 

truly the most accurate ground truth for matching images 

based on brightness, since every person’s vision is slightly 

different.  

To test the legitimacy of this ground truth, we gave seven 

sensors and a copy of the color chart to six people and 

instructed them to match each sensor to the color chart. 

Figure 3 shows the results of this study. This data supports 

the choice of human vision as a ground truth, but also 

suggests that our system would be beneficial in reducing 

subjectivity while sill returning results accurate with respect 

to those obtained using human vision. We also compared 

the results of manual analysis with the results from our 

system. This system matched the sensor to the same bar as 

at least one person 99 percent of the time, and was found to 

have a maximum deviance of one bar from the average 

result of our chosen ground truth.  

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Matching 7 Sample Filters to the Gray Scale Visually

A test of our "base truth" metric

bar 1

 bar 2

bar 3

bar 4

bar 5

bar 6

bar 7

bar 8

bar 9

SensorN
u
m
b
e
r 
o
f 
P
e
o
p
le
 W
h
o
 M
a
tc
h
e
d
 t
o
 A
 G
iv
e
n
 B
a
r 
o
n
 t
h
e
 G
ra
y 
S
c
a
le

 

4. FUTURE WORK 

Further work is needed in the testing of this system. 

Because lack of contrast makes it difficult for the snake to 

construct an accurate edge map, more tests should be run 

segmenting images where the sensor brightness is very 

close to the brightness of the paper the sensor is mounted 

on. Again, we are looking into improving segmentation by 

applying concepts of blind, uniform initialization. 

Decreasing maximum run time would also guarantee that 

data from all of Surya’s sensors could be analyzed daily. 

Parallel computing is a possible answer to this problem. 

5. ACK(OLEDGEME(TS 

Thanks to Summer@CENS for providing us with the 

resources to undertake this research.  

6. REFERE(CES 
[1] Ramanathan, V. and K. Balakrishnan. “Project Surya: 

A White Paper.” San Diego, Scripps Institute of 

Oceanography, U. of California; Chennai, India, Sri 

Ramachandra Medical College and Research Institute, 

2007. 

[2] Smeulders et. al. “Content-Based Image Retrieval at the 

End of the Early Years.” IEEE Transactions on Pattern 

Analysis and Machine Intelligence. 22.12(Dec. 2000): 

p1349-1380.  

[3] Flickner et. al. “Query by Image and Video Content: 

The QBIC System.” Computer: the Flagship Publication of 

the IEEE Computer Society. 28.9(Sept. 1995): p23-32. 

[4] Meeker, Karen. Untitled Thesis. UCSD, 2008. 

[5] Meguerdichian et. al. “Project BudBurst: An 

Application of SMS and MMS to Citizen Science and 

Participatory Sensing.” UCLA, 2008. 

[6] Python Imaging Library Handbook.2005. Diango. 5 

July 2008 

<http://www.pythonware.com/library/pil/handbook/imagese

nsor.htm> 

[7] Sezgin, Mehmet and Bulent Sankur. “Survey over image 

thresholding techniques and quantitative performance 

evaluation.” J. Electronic Imaging.13.1(1 March 2004): 

 [8] Chuang, Cheng-Hung and Wen-Nung Lie. “Automatic 

snake contours for the segmentation of  

multiple objects.” Circuits and Systems, 2001. ISCAS 

2001. The 2001 IEEE International Symposium. 2(6-9 May 

2001):p389-392. 

[9] Xu, Chenyang and J.L. Prince. “Gradient vector flow: a 

new external force for snakes.” ComputerVision and 

Pattern Recognition, 1997. Proceedings., 1997 IEEE 

Computer Society Conference on. (17-19 Jun 1997): p66-

67.  

[10] Active Contour Toolbox. 27, June 2008. The 

MathWorks, Inc. 22 August 2008. 

<http://www.i3s.unice.fr/~debreuve/acontour.htm> 

[11] Jovisa Zunic and Milos Stojmenovic. “Boundary based 

shape orientation.” Pattern Recognition. 41.5(May 2008): 

p1768-1781 

 

Figure 3. Test of our ground truth 



                                                                

 

 

 

 

 


