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Abstract— Recent advancement in microsensor technology
permits miniaturization of conventional physiological sensors.
Combined with low-power, energy-aware embedded systems
and low power wireless interfaces, these sensors now enable
patient monitoring in home and workplace environments in
addition to the clinic. Low energy operation is critical for
meeting typical long operating lifetime requirements.

Some of these physiological sensors, such as electrocardio-
graphs (ECG), introduce large energy demand because of
the need for high sampling rate and resolution, and also
introduce limitations due to reduced user wearability. In this
paper, we show how context-aware sensing can provide the
required monitoring capability while eliminating the need for
energy-intensive continuous ECG signal acquisition. We have
implemented a wearable system based on standard widely-used
handheld computing hardware components. This system relies
on a new software architecture and an embedded inference en-
gine developed for these standard platforms. The performance
of the system is evaluated using experimental data sets acquired
for subjects wearing this system during an exercise sequence.
This same approach can be used in context-aware monitoring
of diverse physiological signals in a patient’s daily life.

I. INTRODUCTION

Advancement in wireless sensing technology over the past
decade can enable a capability of continuous and unobtrusive
monitoring of patients who are at risk outside the confines of
traditional clinics and for a wide range of patient conditions.
Conventional physiological sensors (e.g., electrocardiographs
(ECGs), pulse oximeters (SpO2)) and motion activity sensors
(e.g., accelerometers, gyros) can now be miniaturized and
integrated with embedded computing platforms and wireless
interfaces to produce inexpensive, lightweight sensor nodes
that can be worn on the patient body [1], [2]. Although these
sensor nodes offer the potential low power operation, the
need to limit the battery volume to enable a compact pack-
age, and the need for supporting energy-intensive sensing
systems requires an energy management method. This further
must optimize the operation of sensors and other components
to meet measurement demands while minimizing energy.

Energy usage of the sensor nodes may be reduced by
activating and deactivating sensors according to real-time
measurement demand. Indeed, as will be described, not all
the physiological sensors are needed at all times in order
to determine the need for each measurement. For example,
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an ECG signal from a patient at risk with a particular
heart condition may be needed for analysis only at certain
times, such as during or after an exercise [3], [4]. ECG
sensors, on the other hand, introduce a large cost in terms
of energy due to its high sampling rate. Also, the ECG
sensor is costly in terms of patient wearability because of
the uncomfortable electrode systems. Motion and activity
detection sensors offer a lower cost measurement capability.
Thus, an opportunity exists for the use of low cost sensor
data acquisition combined with proper real time computation
to determine patient context and apply this information to
properly schedule use of high cost sensors, for example, ECG
sensor systems.

Determination of patient context with motion sensors has
been explored previously using Bayesian and other equiva-
lent classifiers [5], [6], [7], [8]. In this paper, we also use a
Bayesian classifier to classify the patient context. The result
of the patient context classification is then used to determine
when the ECG sensor is ultimately needed, based on the use
of other low-power sensors. The decision is made in real-
time by an inference engine [6] supported on a wearable
testbed system based on commercially available hardware
components [2]. It is important to note that this general
purpose testbed, the design of the embedded inference en-
gine, and other components are intended to support standard
handheld wireless products. This introduces the potential for
large scale use since these handheld devices are ubiquitously
available and in global use.

This new capability is generally applicable to a wide
range of applications in patient monitoring. In this paper,
we describe how data from a wrist-worn pulse oximeter is
used to determine the requirement for the ECG sensor use,
which we define here as immediately after an exercise. We
show that the pulse rate information is a reliable predictor
in determining the start of an exercise sequence but cannot
be used to determine the termination of a period of physical
exertion, such as represented by continuous motion during
exercise. As a result, we use accelerometers to determine
the end of the exercise. In each case, determination is based
on a systematic inference that exploits actual, measured
patient behavior. The wearable device computes this decision
to activate the ECG sensor autonomously and streams the
captured ECG signals via a wireless network to a centralized
server. This provides data access to medical personnel who
can view this data in real-time. We illustrate the performance
of this system using test subject experiments.
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II. MATERIALS AND METHODS

The testbed system proposed in [2] is supplemented with
additional physiological sensors.

A. Hardware

The testbed includes commercially available hardware
components such as a standard PDA [9], Bluetooth data
acquisition modules [10], and a pulse oximeter [11]. The
Bluetooth modules are integrated into a new embedded
sensor node platform based on open-source designs, such as
ECG systems [12] and accelerometer systems [13] (Fig. 1).

The sensors nodes (pulse oximeter, ECG, and accelerom-
eter) form a wireless body area network (WBAN) with the
PDA as the master node over the Bluetooth network. The
16-bit, 0-5 volt data (biased around 2.5 V) from the ECG
and accelerometers can be acquired up to 300 samples per
second (Hz) and streamed in real-time to the PDA. For our
application, the ECG signal is acquired at a sample rate
of 250 Hz while the three accelerometer axes are sampled
at 100 Hz. Each data point from the Bluetooth module is
accompanied by a tracking sequence number to verify errors
in Bluetooth communication. From the pulse oximeter, one
data point consisting of pulse rate and SpOs is received at
the PDA every second.

B. Software

A multi-threaded device server system on the PDA (Fig. 2)
acquires and forwards data from the sensor nodes to client
programs such as the inference engine [6] and graphical user
interface [2], enabling the client programs to process data as
well as display in real-time. A device driver thread handles
communication to each sensor node over the Bluetooth Serial
Port Profile. The device server receives the data from the
device driver threads asynchronously via dedicated buffers
before forwarding to the client programs over TCP/IP sock-
ets.

C. Context-aware Sensing

The context-aware sensing algorithm of an ECG signal
(Fig. 3) consists of two naive Bayes classifiers, one each for
pulse and motion classifications. Each naive Bayes classifier
is preceded by a feature extraction step.

. —2lead ECG

3-axis Accelerometer

Bluetooth Modules

Fig. 1.
commercially available Bluetooth modules

2-lead ECG and 3-axis Accelerometer sensor boards attached to

1) Feature Extraction: For pulse classification, the pulse
rate and SpO. values are directly used as feature values
(Eq. 1 and Eq. 2).

fpulse = pulse rate )

fspo2 = SpO2 value 2)

In contrast, the accelerometer classification involves mo-
tion states with cyclical movement. Thus, features from
the spectral domain are used instead of the time domain
values. Note that in the general case, features in the time
domain may also be vital in characterizing patent states
involving non-cyclical movements [14]. Additional feature
extraction procedures can be incorporated in the inference
engine without changes to the other parts of the system.

Two spectral feature values from each axis of the ac-
celerometer are extracted in the feature extraction step, on
a window of every 512 data points. The classifier runs once
every second, combining the 100 new data points (due to
100 Hz sampling) with 412 previous data points. After low-
pass filter with a cutoff frequency at 40 Hz on the 512 data
points, the peak spectral value fycqx and the spectral energy
value fenergy are selected as feature values for the classifier,
where X (k) = F(z(t)) and N is 512.

fpeak = mazy, || X (k)| A3)
N/2

fenergy - Z X(k) * X(k) (4)
k=1

The time-independent (dc) component is excluded from
the spectral energy calculation in Eq. 4. The output of this
step is a feature vector, F = {Fy,--- , F,}, extracted from
the sensor data.

2) Naive Bayes classifier: The inference engine uses a
naive Bayes classifier model to infer patient state proba-
bilities given the feature vector, F. The classifier is imple-
mented with a naive Bayes network [15], which is based
on a conditional probability p(C|F) (i.e., the probability
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Fig. 2. Software Architecture
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Fig. 3. Context-aware sensing algorithm of an ECG signal

of a class variable C with a small number of outcomes
or classes, conditioned on a vector of feature variables
F = {F, ---,F,}). Note that F is a vector consisting
of the sensor features (Eqs. 1 — 4) and C consists of the
patient states of interest. Now, using Bayes’s theorem and
applying the “naive” assumption that if the class C' is known,
each feature F; is conditionally independent of every other
feature F; for j#i. Hence, p(F|C) = T[], p(F;|C) and
p(F) = []’_, p(F;). The conditional distribution over the
class variable can be expressed as shown below.

PO I1i, p(F|C)
HZL:1 p (F z)

As a result, one can infer the probabilities for the patient
being in one of |C| states given the sensor feature vector, F.
In our test case, the pulse classifier consists of three states
{Low, Medium, High} and directly uses the pulse rate and
SpO4 data values as features. When the pulse classification
is found to be low or medium, neither accelerometer nor
ECG sensor node is activated. When the pulse is high, the
accelerometers are activated for motion classification. Also,
for purposes of this prototype application, the accelerometer
classifier consists of four states {Rest, Walk, Jog, Run}. If the
accelerometer classifier indicates that the patient is exercising
(Jog or Run), the ECG sensor is not activated. Otherwise,
the ECG sensor is activated; its data is acquired over the
Bluetooth wireless network and streamed from the PDA to
a back-end centralized server via WiFi network.

p(C|F) =

(5)

ITI. RESULTS

The experimental testbed system (Fig. 4) consists of a
wrist-worn pulse oximeter, two sets of 3-axis accelerometers,
and a 2-lead ECG sensor node. One of the accelerometers
is attached to the left hip while the other is attached to the
right ankle so that diverse motion signals can be captured.
We acquired both classifier training and testing data from a
single healthy male subject during two separate exercises on
different days. The test data is shown in Fig. 5 while the

3-axis
/ Accelerometer

ECG Sensor

Pulse Oximeter

3-axis )
Accelerometer M ;

Fig. 4. Experiment setup

training data is not shown. The subject sits on a chair when
resting, and walks, jogs, and runs on a treadmill at speeds
of 2, 4, and 6 miles per hour, respectively.

The pulse rate data is shown in Fig. 5 along with the
ground truth patient context, the classification results, and
the ECG usage decision. The test begins with the subject
sitting on a chair for about 3 minutes, followed by walking
on a treadmill. The pulse classification correctly detects the
change of pulse rate from Low to Medium. As our context
model (Fig. 3) does not require accelerometers and ECG
sensors in these states, they remain deactivated and in a
power-off state.

After 4 minutes of walking, the subject jogs for about
3 minutes, which is detected by the pulse classification.
Because the pulse rate changes to High, the accelerometers
are turned on, resulting in an accelerometer classification of
Jog. As the subject is exercising (Jog or Run), the context
model does not require the ECG sensor, which remains off.
The subject rests for about 2 minutes after jogging, resulting
in a gradual decline of the pulse rate. Because a few seconds
are required for the subject to decelerate from the treadmill
and walk to a chair before sitting down, the accelerometer
classification reflects these states. When the accelerometers
classify the subject as walking and resting, the context model
triggers the use of the ECG sensor as the pulse rate is now
high and the patient is not exercising. The ECG sensor is
deactivated as soon as the pulse classification changes to
Medium.

The subject then runs for about 4 minutes, resulting in a
gradual increase of pulse rate. The pulse classifier indicates
High, resulting in activation of the accelerometers. The
accelerometer classification indicates the subject is running,
resulting in the decision not to activate the ECG sensor.
After the subject completes the running step, the ECG
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Fig. 5. Experiment test data showing the pulse rate. The pulse and accelerometer classification results along with the decision of whether to actuate the

ECG sensor are also shown. The accelerometers and ECG sensor nodes are off at times when the classification or decision results are not shown. The

x-axis indicates the local time of the PDA’s system clock.

sensor is activated because the patient has stopped exercising
and the pulse rate remains high. When the decline of the
pulse rate oscillates near the threshold between Medium and
High states, the erratic activation and deactivation of the
accelerometers and ECG sensor can be observed.

Errors in sensor operation appear and can be identified.
For example, we show an example where the patient runs
again for the second time and errors in the pulse rate values
can be observed. These errors are not due to the Bluetooth
communication, but rather because of the failure of the
pulse oximeter measurement resulting from intense hand
movement. As soon as the subject is asked to steady his hand,
the pulse rate values return to normal and the classification
results become similar to the previous run. Activation of
the ECG sensor following the run is similar to that of the
first run. A few accelerometer classification errors between
Jog and Run states can also be observed when the subject
was jogging. We believe this can be improved by including
more features relevant to Jog and Run in the classification
and several other techniques that we currently investigating.
Example data points acquired from the ECG sensor node is
shown in Fig. 6.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented the design, implementa-
tion, and experimental evaluation of context aware sensing
enabled by an embedded inference engine and a real time
decision system based on fusion of multiple sensor signals.
We have also demonstrated the support of this system on
conventional, standard, wireless handheld devices. We also

presented experimental results for ECG measurements. With
the addition of a new software architecture, the wearable

system based on commercially available hardware compo-
nents can be used to efficiently and effectively monitor
patients in real-time. Central to this capacity is the use of
a Bayesian classifier based context-aware algorithm, permit-
ting the wearable system to intelligently adapt to the patient
context. We presented the system performance using a real
data set during an exercise. In general, the same approach
can be used in context-aware monitoring of physiological
signals in a patient’s daily life.

In future work, this testbed will be deployed and applied
to many patient studies for investigation of the effect of
exercise-induced stress on patients with heart disease. The set
of Bluetooth supported sensors is also being expanded and
accompanied with an open source release of the new platform
and its software systems. An important application being
studied is chronic obstructive pulmonary disease (COPD),
which requires the correlation of many different patient
parameters and benefits directly from the methods described
here. As the number of sensors increase in wireless body area
networks, the context-aware algorithm described here will
also expand its support, taking advantage of the successful
Incremental Diagnosis Method used in gait analysis [6].
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Fig. 6. Example ECG data when the subject was resting initially (above) and resting right after Run (below). The ECG signal of the subject when resting
initially is not part of the experiment but included here for comparison.
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