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Abstract. As the proliferation of pervasive and ubiquitous computing devices 
continues, users will carry more devices.  Without the ability for these devices 
to unobtrusively interact with one another, the user’s attention will be spent on 
coordinating, rather than using, these devices.  We present a method based on a 
coherence function, a measure of linear correlation in the frequency domain, to 
reliably analyze walking data recorded by low-cost MEMS accelerometers to 
determine if two devices are carried by the same person.  We use inexpensive 
accelerometers and show that these sensors perform similarly to more 
expensive accelerometers for the frequency range of human motion, 0 to 10Hz.  
We also present results from a large test group illustrating the algorithm’s 
robustness and its ability to withstand real world time delays, crucial for 
wireless technologies like Bluetooth and 802.11.  We present results that show 
that our technique is 100% accurate using a sliding window of 8 seconds of data 
and the devices are carried in the same location on the body (we also present 
results for when devices are carried on different parts of the body), is tolerant to 
inter-device communication latencies, and requires little communication 
bandwidth. 

 
 
For the past 30 years, the dominant model for using our computing devices has 

been interactive.  This approach puts the human in a feedback loop together with the 
computer.  A user generates input and the computer responds through an output 
device that is observed by the user who then reacts with new input.  When the ratio of 
humans to computing devices was close to 1:1, this was a reasonable approach.  Our 
attention was commanded by one device at a time, our desktop, laptop, or handheld.  
This was appropriate as our tasks often involved manipulating information on the 
computer’s screen in word processing, drawing, etc.  

Today, the conditions of human-computer interaction are rapidly changing.  We 
have an ever-increasing number of devices.  Moreover, they are becoming deeply 
embedded into objects, such as automobiles.  Many of these devices have a powerful 
CPU inside of them, however, we do not think of them as computing devices.   

There are two main implications of this explosion in the number of computing 
devices.  First, the human user can no longer be in the loop of every interaction with 
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and between these devices.  There are just too many, the interactive model simply 
does not scale.  To further complicate matters, each device will necessarily have a 
different specialized user interface due to their different functions and form-factor. 

In the future, unless devices share information appropriately, these devices will end 
up demanding even more of our time as use becomes more casual.  Second, as these 
new devices are embedded in other objects, we often are not even aware there are 
computing devices present, because our focus is on our task, not on the devices.   

Invisibility is an increasingly important aspect of user interaction with the principal 
tenet being “do not distract the user from the task at hand”.  An example of this is 
package delivery, which now includes tablet-like computers to collect signatures, 
RFID tracking of packages, and centralized databases to provide web services to 
customers, such as the current location of their parcel.  Delivery truck drivers, cargo 
handlers, and recipients do not want a user interface to slow down a package in 
reaching its destination.  They prefer if the devices gather input, explicitly or 
implicitly, and communicate the data amongst themselves.  There is no reason for 
users to take an interactive role with all the steps, nor do they want to.  Another 
example draws on devices becoming so cheap that they are viewed as a community 
resource.  In hospitals, nurses and physicians carry clipboards, charts, and folders that 
could provide more timely information if they were electronic devices connected to 
the hospital’s infrastructure.  Many individuals would use these devices as their paper 
versions are now.  It would be much more efficient for the devices themselves who 
they were being carried by. 

Motivated by these examples, we are investigating methods for devices to 
determine automatically when they should interact or communicate with each other.  
Our goal is to enable devices to answer questions such as: 

 
• Is the same person carrying two devices?  With what certainty? 
• Are two devices in the same room?  For how long? 
• Are two devices near each other?  How near? 
• What devices did I have with me when I came in?  When I went out? 
 
Different applications will want answers to a different set of these and other 

questions.  We are developing a toolkit of technologies and methods that can be used 
by interaction designers to create systems with a high degree of invisible interactions 
between many devices.  This paper presents our work on developing methods for 
answering the first question.   

We assume a world where a user will carry a changing collection of devices 
throughout a day.  These might include a cell phone, a laptop, a tablet, and a 
handheld.  In addition, the collection may include more specialized devices such as, 
RFID or barcode scanners, GPS receivers, wrist-watch user interfaces, eyeglass-
mounted displays, headphones, etc.  These devices may be tossed into a pocket, 
strapped to clothing, worn on a part of the body, or placed in a backpack or handbag.  
We posit that it will be an insignificant addition to the cost of these devices if they 
include a 3-axis accelerometer.  We also expect these devices to have a means of 
communicating with each other through wireless links, such as Bluetooth or 802.11.  
Recent work in wireless sensor networks is demonstrating that the communicating 
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nodes may become as small as “smart dust” and function with a high degree of power 
efficiency. 

Here we consider the problem of how easily and reliably two such devices can 
autonomously determine whether or not they “belong” to the same user by comparing 
their acceleration over time.  If the acceleration profiles of the two devices are similar 
enough, they should be able to conclude that the same person is currently carrying 
them.  In practical situations, one of these devices may be a personal one (e.g., a 
wrist-watch or pager on a belt that is “always” with the same person) while the other 
is a device picked-up and used for a period of time.  The question we posed is: “How 
reliably can accelerometer data be used to make the determination that two devices 
are on the same person?” 

2 Related Work 

There are several techniques that could be used to answer our question.  We could 
use capacitive-coupling techniques to determine if two devices are touching the same 
person [1], however, this requires direct physical contact with both devices and is 
highly dependent on body geometry and device placement.  A second approach is to 
use radio signal strength [2] to determine proximity of two devices.  However, RF 
signal strength is not a reliable measure of distance and is also highly dependent on 
body orientation and placement of devices.  Furthermore, these RF signals could be 
received by nearby unauthorized devices on another person or in the environment. 

The approach we found most appealing is to use accelerometers to directly 
measure the forces acting on two devices and then compare them over a sliding time 
window.  There has been much previous work in using accelerometers for gesture 
recognition and device association.  We describe the contributions of three different 
pieces of related work: two from the ubiquitous computing research community and 
one from bioengineering instrumentation. 

Gesture recognition using accelerometers has been used to develop a wand to 
remote control devices in a smart space [3] and a glove that uses sensing on all the 
fingers to create an “air keyboard” for text input [4].  This work is primarily 
concerned with using accelerometer data as part of the process in computing the 
position of an object, in these cases, a plastic tube or finger segments, respectively.    
By observing the variations in position over time, gestures can be recognized. 

Device association is the process by which two devices decide whether they should 
communicate with each other in some way.  Work at TeCO used accelerometers to 
create smart objects (Smart-Its) that could detect when they were being shaken 
together [5].  The idea was to associate two devices by placing them together and 
shaking the ensemble.  Similar forces on the two devices would allow the connection 
to be established.  The assumption is that it would be unlikely that two devices would 
experience the same forces unintentionally.  Hinckley has developed a similar 
technique that uses bumping rather than shaking [6].  In both these cases, the analysis 
of the accelerometer data is in the time domain, which can be sensitive to latencies in 
communication between the devices.  Both issues also have similarities in that the 
decision is strictly binary, instead of a probability that the two devices are being 



4      Jonathan Lester, Blake Hannaford, and Gaetano Borriello  

intentionally associated.  However, the principal difference between this work and 
ours is more fundamental.  While these two contributions exploit explicit user-
initiated interactions (shaking or bumping), our focus is on making the determination 
implicitly and independent of the user’s attention. 

The work that is closest to ours, and provided much of our inspiration, used 
accelerometers to determine if the trembling experienced by a patient with 
Parkinson’s Disease was caused by a single area of the brain or possibly multiple 
areas of the brain [7].  The key observation in this work is that Parkinson’s related 
shaking is likely due to multiple sources in the brain that may be coupled to each 
other.  Shaking in the same limb was found to be highly correlated, however, shaking 
across limbs was found to be uncorrelated.  Physicians developed accelerometer 
sensors that were strapped to patients’ limbs, data was collected, and an off-line 
analysis determined if the shaking was correlated in the frequency domain.  We use a 
very similar approach, but with an on-line algorithm which can be running 
continuously within the devices being carried rather than strapped to the body.  

Researchers attempting to identify activities in real-time have performed research 
to identify multiple activities, standing, sitting, walking, lying down, climbing stairs, 
etc. using more structured placement of multiple sensors and analysis methodologies 
like neutral networks and Markov models [10].  See [8] for a detailed overview of this 
work.  

3 Our Approach 

In order to provide a useful detection tool that doesn’t require any user interaction; 
the input to our system must come from an existing, natural action.  In this paper we 
focus on the activity of human walking.  

Although there are a number of different actions that a person regularly performs, 
walking provides a useful input because of its periodic nature.  Human motion is 
regulated by the mechanical characteristics of the human body [9] as much as 
conscious control over our limbs.  This regular, repeated activity lends itself to an 
analysis in the frequency domain, which helps reduce the effect of problems like 
communication latencies, device dependent thresholds, or the need for complex and 
computationally expensive analysis models.  

We have two aims in this paper.  First, we want to assess the quality of acceleration 
measurements obtained from low cost accelerometers, to ensure that these devices are 
appropriate for this application and that their measurements have a physical basis, by 
comparing their outputs with higher quality sensors subjected to the same 
accelerations.  Second, we want to determine whether there is sufficient information 
in the accelerations of two devices to determine whether they are being carried 
together.   
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4 Methods 

Three different 3-axis MEMS accelerometers were used for our experiments, two 
were low cost commercial accelerometers from Analog Devices [4, 5] and 
STMicroelectronics, and the third was a calibrated accelerometer from Crossbow 
Technologies.  Table 1 lists the accelerometers along with some specifications for 
each device.  

Table 1.  Chosen specifications from each of the three accelerometers used 

Manufacturer  Model  Axis  Sensitivity  Bandwidth1 
Analog Devices  ADXL202E  2-axis2  ± 2G  ~100Hz 
STMicroelectronics  LIS3L02   3-axis  ± 2G/6G3   ~100Hz 
Crossbow Technologies  CXL02LF3  3-axis   ± 2G  50Hz 

 
Since the accelerometers used in these experiments provide 3-axis outputs (X, Y, 

and Z) data can be processed on a given set of axes, or taken as a whole.  We assume 
a random, and possibly continuously changing, orientation and thus we take the 
magnitude of the force vector by combining the measurements from all 3 axes using 
Eqn. 1 to derive a net acceleration independent of orientation.  Each accelerometer is 
capable of measuring the 1G gravity field present on the Earth, and although this 
information can be used to estimate the direction of the gravity vector, we subtract 
this offset from our data to reduce the DC offset in the Fast Fourier Transform (FFT) 
frequency spectra.  

( ) ( ) ( )222
zyxmag AAAA ++=  (1) 

Figure 1 shows the magnitude of the output of the accelerometers for a subject 
walking, and riding an elevator.  For this experiment, as well as the majority of the 
experiments in this paper, the subject wore the accelerometer in a fanny pack worn 
around the waist.  The use of the fanny pack ensured that the placement of the sensors 
was consistent between different test subjects.  However, we also show results for 
carrying the devices elsewhere on the body. 

 

                                                            
1 Bandwidth as configured in this experiment 
2 Two ADXL202E’s are mounted at 90º to provide 3-axis (plus one redundant axis) 
3 The LIS3L02 has a pin selectable sensitivity between ±2G and ±6G 
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Fig. 1. Example of filtered magnitude data from accelerometer, similar to [10].  Data shows 
subject walking, riding down an elevator, walking, riding up an elevator, and walking  

4.1 Accelerometer Characterization and Experimental Setup 

The purpose of using a precise calibrated accelerometer is to characterize the 
performance of the low cost accelerometers; to ensure that the data provided is an 
accurate representation of the physical world.  Without verification any experimental 
results could be based off of false data or rely upon artifacts present in the sensors and 
not in the physical environment. 

The physical mechanics and low-level neural circuits of the human body controls 
the way humans walk, more than their conscious control of limbs.  This automatic 
control makes walking a regular periodic activity, which has been studied extensively 
in the biomechanics community.  It is widely accepted that the useful frequency 
spectra of human motion lies within the range of 0 – 10Hz [9].  Using this range as 
our region of interest we focus our study of accelerometers on the 0 – 10Hz range.  

To characterize the accelerometers several experiments were conducted using 
different combinations of accelerometers.  Data collection was carried out using a 
custom interface board, (approx. 9cm x 5cm) designed to record data through a serial 
connection to an iPaq, and a commercial data collector from Crossbow Technologies, 
the AD128.  Our results showed that for low frequencies, 0 – 10Hz, the ADXL202E 
and LIS3L02 (the smaller and cheaper accelerometers) performed similarly to the 
CXL02LF3 (the larger and more expensive, but more robust, accelerometers), 
producing very consistent magnitude and FFT spectra.  These results allow us to 
reliably conclude that low cost accelerometer are appropriate for collecting data in 
this frequency range and that they provide reliable data.  Figure 3 shows an 
experiment performed with two accelerometers placed on a swinging pendulum, both 
traces are nearly identical in time and frequency domains.   
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Fig. 2. Acceleration magnitudes and their corresponding FFT spectra collected during a 
swinging pendulum test showing that both signals are very similar in the time and frequency 
domains 

4.2 Coherence 

Given a time series of acceleration magnitude signals, like those found in Figure 1, 
it was necessary to find a reliable method for examining the data.  Ben-Pazi et al.[7] 
used the coherence function to analyze the origin of rest tremors in patients with 
Parkinson’s.  By examining their use of coherence with biological accelerometer data, 
we reasoned that such methods could be expanded to other signals like the 
accelerations experienced by the body when walking. 

Coherence, γxy( ƒ ), is a normalized function of frequency derived from the cross-
spectrum of two signals, Sxy, divided by the power spectrum of each signal, Sxx and 
Syy [11, 12].  Coherence measures the extent to which two signals are linearly related 
at each frequency, with 1 indicating that two signals are highly correlated at a given 
frequency and 0 indicating that two signals are uncorrelated at that frequency [7, 11, 
13].  Since the coherence is a complex quantity it is often approximated using the 
magnitude squared coherence (MSC), Cxy, shown in Eqn. 2.  As all coherences used 
in this paper are real valued we’ll refer to the MSC estimator simply as the coherence. 

( ) ( )
( )

( ) ( )

2
2 xy

xy xy
xx yy

S f
C f f

S f S f
γ= =  

 

(2) 

If the two signals used to compute the coherence are identical, then the coherence 
gives a unity result for all frequencies.  Similarly if two signals are two completely 
uncorrelated random processes, the coherence is zero for all frequencies. For 
example, two separate audio signals recorded from an orchestra playing the exact 
same score would have a high coherence, near 1, for most of the audio spectra, 
whereas two orchestras playing completely different scores would have low 
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coherences, near 0, for most of the audio spectra.  And of course, two similar audio 
signals would have coherences spread throughout the range.  

Eqn. 2 would always result in a unity magnitude for all frequencies (though the 
imaginary component may not be 1) if a single window were used to estimate the 
spectral density.  The use of multiple windows in estimating the spectral densities 
allows the coherence magnitude to be non-unity.  A commonly used windowing 
method is called weighted overlapped segment averaging (WOSA) and involves 
splitting two signals, X and Y, into equal length windowed segments.  The FFT of 
these segments is taken and their results are averaged together to estimate the spectral 
density.  As the name suggests segments can be overlapped to reduce the variance of 
the spectral estimate (an overlap of 50% is fairly common), however, overlapping is 
more computationally expensive.  As our goal is to use these algorithms in 
environments with limited computing power we limit ourselves to two windowed 
segments, no overlapping segments, and a FFT size equal to the size of the input data 
[11, 14, 15].   

Different window sizes/types as well as different sized FFTs can be used to obtain 
coherences with different attributes.  Different window types have different 
characteristics and for simplicity a common Hanning window is used in our 
calculations.  The number of windows used in a coherence calculation determines the 
significance level of the coherence output, that is, the more windows used the lower 
coherence has to be to signify a strong coherence.  In general, more windows provide 
smoother coherences, with less variability, but require more computations.   

Due to the fact that the coherence is a function of frequency, it was necessary to 
determine a method of computing a scaled measure of similarity based on coherence.  
A basic measure is to integrate the area under the coherence curve for a given 
frequency range.  By leveraging the fact that physical human motion rests below the 
10Hz range, we used a normalized integration over the range from 0 – 10Hz (i.e., by 
multiplying the resulting integral by 0.1) to get a 0 to 1 measure of the coherence 
(Eqn. 3). This result is expressed as Pxy, and is the measure of similarity between our 
two acceleration signals.  

( )∫=
10

0
1.0 dffCP xyxy  

(3) 

Although more complex methods are possible, the results presented in this paper 
only use this basic normalized integration of the coherence from 0 – 10Hz.  This 
allows us to reliably quantify the coherence output using relatively fast and 
computationally inexpensive methods.   

5 Experimental Data and Results 

Two main experiments are discussed here.  In the first experiment, the single-
person experiments, six test subjects walked normally for ~30 meters wearing two 
accelerometers in a fanny pack around their waist.  Each subject walked this distance 
eight times; twice with four different combinations of accelerometers and data 
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collectors (listed in Table 2).  Giving a total of 48 sets of recordings for the first 
experiment. 

Table 2. Each subject completed the following four walking trials twice, a total of 8 walking 
trials from each subject 

Walking Trial First Sensor Second Sensor Data Collector 
1, 2 ADXL202E CXL02LF3  AD128 
3, 4 LIS3L02 CXL02LF3  AD128 
5, 6 ADXL202E CXL02LF3  Custom Board 
7, 8 LIS3L02 CXL02LF3  Custom Board 

 
In the second experiment, the paired walking experiments, six subjects walked a 

distance of ~61 meters in pairs with another test subject.  Again, each of the subjects 
wore two accelerometers in a fanny pack around their waist and data was collected 
using a custom interface board and an iPaq.  During this experiment each subject 
walked with every other subject for a total of 15 pairs.  Each pair of subjects walked 
the 61 meter distance four times, the first two the first two times they walked casually 
with the other person, and the last two times they walked purposely in stride with the 
other person.  Giving a total of 60 sets of recordings for the second experiment.  

The data from these two experiments was then manually trimmed so that only the 
walking data from each pair of recordings was selected.  It is possible to use this 
method on a continuous stream of data by, for example, performing the calculations 
on 1-second wide windows of data and using the combined result over the past 8 
seconds. 

5.1 Single-Person Walking Experiment 

Figure 3 shows a sample of the data collected from the first experiment.  Fifteen 
seconds of acceleration magnitude data (bottom plot) were used to calculate the FFT 
spectra and the coherence (top plot).  The two signals compared in Figure 3 were 
from data recorded on the same individual, during the same walking trial.  The high 
coherence shown in Figure 3 indicates that the two signals are highly correlated at 
most of the frequencies.  Notice also that the two FFT spectra appear similar as the 
two signals recorded the same walking pattern.  

Figure 4 shows a similar figure, however, this time the two signals compared are 
not from the same individual.  The data from the CXL02LF3 sensor in Figure 4 is the 
same 15-second segment shown in Figure 3 while the ADXL202E data is from a 
different person’s walking segment, which was chosen because of its similar time 
plot.  The wildly varying coherence shown in Figure 4 indicates that the two signals 
are not highly correlated, despite appearing similar in the time plots.  The FFT spectra 
shown in Figure 4 are noticeably different as well. 

To analyze the data in the first experiment we took the first 8 seconds of walking 
data from each trial and computed the coherence of each possible pairing of 
recordings.  This created a 48 x 48 matrix (not shown) of coherence results.  The 
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diagonals of this matrix correspond to the (matching) coherences between pairs of 
sensors worn on the same person during the same trial.  And the off diagonals 
correspond to the (non-matching) coherences between pairs of sensors worn on 
different subjects during different trials.  Viewing the 0 to 1 range of the coherence 
integral as a percentage from 0 – 100% we found that the matching diagonal 
coherences had a mean of 90.2% with, a standard deviation of, 5.2%.  By contrast the 
non-matching off diagonal coherences had a mean of 52.3% with a standard deviation 
of 6.1%.  

 

 
Fig. 3. Coherence and FFT spectra (top) of matching devices on the same person during a 15 
second walking segment – (bottom) acceleration magnitudes as a function of time.  Coherence 
is nearly 1 for the 0 – 10Hz range, indicating two highly correlated signals  

 
Fig. 4. Coherence and FFT spectra (top) of acceleration measured on different subjects during a 
15 second walking segment – (bottom) acceleration magnitudes as a function of time.  
Coherence is not 1 for most of the 0 – 10Hz range, indicating two uncorrelated signals 

 



       Using Accelerometers to Determine if Two Devices are Carried by the Same Person      11 

5.2 Paired Walking Experiment 

To analyze the data in the second paired walking experiment we again took the 
first 8 seconds of walking data and computed the coherence of each possible pairing 
of recordings.  Unlike the first experiment, we now have four sets of accelerometer 
data, instead of two, because each of the two people walking together carries two 
accelerometers.  Two accelerometers correspond to the first person in the pair, test 
subject A, and the other two correspond to the second person, test subject B4.  We can 
therefore create two 60x60 matrices of coherence results, one corresponding to the 
two accelerometers on test subject A and the other to test subject B.  Figure 5 shows 
the 60x60 matrix created using only the data from test subject A (test subject B’s data 
creates a similar matrix and is not shown).  

 

 
Fig. 5. Coherence values between all possible pairs of device 1 and device 2 worn on test 
subject A.  In this matrix, coherences are calculated only with the first 8 seconds of walking 
data.  The dark diagonal indicates high coherence between sensors worn on the same person at 
the same time 

Again, the diagonals correspond to the coherence of matching pairs of 
accelerometers worn on the same person, test subject A, at the same time.  As we 
would expect the diagonals show a high coherence with a mean of 95.4% ± 3.1% std.  
And the off diagonals show a low coherence with a mean 52.9% ± 6.6% std as they 
correspond to sensor data from different people recorded at different times.  

                                                            
4 Test subject A and test subject B refer to the first and second person in each trial pair and not 

to any specific test subjects in the trials 
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Another useful matrix to examine would be the coherence between a device on test 
subject A and a device on test subject B.  If coherence were affected by the two 
people walking together casually, or in step, we would expect to see high coherences 
on the diagonal of this matrix.  Again, since each subject had two accelerometers on 
them we could construct more than one such matrix, we only show one of these 
matrices in, Figure 6.  To create the matrix in Figure 6 we took the first accelerometer 
data from subject A and the first accelerometer data from subject B in each pair and 
computed the coherence of each possible pairing of recordings (other combinations of 
accelerometers on different test subjects produce similar results).  In Figure 6 the 
diagonals correspond to the coherences of two devices worn on different individuals, 
who walked together at the same time.  The off-diagonals represent the coherences of 
two devices worn on different individuals, recorded at different times.  Overall the 
matrix in Figure 6 shows a low coherence, with the diagonals having a mean of 56.9% 
± 8.4%, and the off-diagonals having a mean of 53.1% ± 6.4% (the entire matrix has a 
mean of 53.1% ± 6.8%). 

 

 
Fig. 6. Coherence values between all possible pairs of device 1, worn on test subject A, and 
device 2, worn on test subject B.  In this matrix, coherences are calculated only with the first 8 
seconds of data from the walking trials.  The light shading throughout the matrix indicates low 
coherence between devices on different people.  The second two rows/cols of each 4x4 box are 
the lock-step trials in which subjects intentionally tried to walk synchronously 

In Figure 6 the 3rd and 4th row/column of each of the 4x4 boxes in the matrix 
represent data from when the subjects were walking together in step.  As you can see 
there is little coherence difference between subjects walking casually together and 
those walking purposely in step.  
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6 Practical Considerations 

For the results presented so far, only the first 8 seconds of walking data were used 
to generate coherence values.  However, different sized segments of data can be used 
to calculate the coherence, with longer segments of walking data providing more 
information and shorter segments providing less information.  The obvious question is 
how large do the segments need to be so as to get ‘enough’ information.  

To address this question, we re-analyzed the data from our first, single-person, 
experiment by splitting the entire data set in segments of 1 – 15 seconds (in 1-second 
increments).  We would expect there to be enough information in a segment if 
coherence is able to successfully pick the corresponding sensor pairs from the same 
segment.  Since the walking data from the first experiment was typically only about 
20 seconds in length this gives us 48 pairs, for 15 seconds, all the way up to 1,212 
pairs, for 1 second segments.  For each segment we computed all the possible 
coherence pairs and recorded the pair with the largest coherence.  If the largest 
coherence belonged to the same pair as our chosen signal then the algorithm correctly 
determined the best fit pairing.  We then repeated the process using the next segment 
until all segments had been processed.  Figure 7, shows the results of this analysis in 
the trace labeled ‘No Delay’, which shows if 8-second, or larger, segments are used 
then the largest coherence is between the correct matching pairs of 100% of the time.  

 
Fig. 7. Interpolated success rates showing the effects of time delay on the coherence results, 
using different length of segments.  For segment lengths greater than eight seconds the success 
rate remains >95% even with a 500ms time delay 

Another practical consideration in deploying this algorithm is understanding how 
sensitive it is to communication latencies between the two devices.  Although data 
transfers would be done in large chunks, i.e. 1 or 8 second sliding windows, it is 
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desirable if the system is relatively insensitive communication delays.  Wireless 
synchronization methods do exist; however, they can require more power hungry 
radio communication.  Given that our analysis uses magnitudes in the frequency 
domain, we would expect some insensitivity to phase shifts in the data.  Figure 7 also 
shows how our results change as we vary the latency between the two devices.  We 
simulated latencies ranging from 0 to 1000ms.  Each curve shows the accuracy for 
different segment lengths at these different latencies.  The results are only slightly 
degraded up to 500ms with more substantial differences above that latency.  We claim 
that this is more than adequate for two devices likely to be in short-range radio 
contact.  For example, Bluetooth packet latency is on the order of 50ms in the worst 
case. 

Another practical consideration is the amount of data to be transferred to calculate 
the coherence.  Because our frequency range lies in the 0 – 10Hz range, we can filter 
the signal and only sample at 20Hz.  At this sampling rate it is only necessary to 
transmit 320 Bytes to the other device to send an 8-second acceleration magnitude (8 
seconds x 20Hz x 2 bytes), which could fit in a single Bluetooth packet.  This would 
enable devices with little computational power or battery life to have a more powerful 
device perform the calculation.  However, if the sampling rate needed to remain high 
we could simply transmit the 0 – 10Hz FFT coefficients necessary for the coherence 
calculation.  Figure 8 shows the situation where accelerometers are still sampled at 
600Hz and the devices do a wireless handshake and then transmit the FFT data.  
 

 
Fig. 8. Hypothetical data exchange as it would take place on embedded devices.  Results in 
Figures 3 – 7 use higher resolution computations.  Labels on the arrows indicate the data that 
must pass from one step to the next.  Gray text in center indicates sensor input data, data 
generated internally, and transferred data between devices.  Eight-second segments are used in 
this example, resulting in 4,800 magnitude data points and a 2,400-point FFT 

The two devices can coordinate which of them will make the determination.  The 
data need only be sent to one device, most likely the one with the processor capacity 
required, or the most battery power, etc. Alternatively, or possibly for security 
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reasons, both devices can make the determination that they are likely on the same 
person.  Of course, a completely secure implementation would require a more 
complex coordination process. 

7 Discussion 

As the activities of interest in our experiments are human motion we are able to 
focus on the frequency range of 0 – 10Hz.  Our initial experiments using a pendulum 
provided a well-controlled environment for closely measuring the behavior of our 
accelerometers against significantly more costly calibrated accelerometers like the 
Crossbow Technologies CXL02LF3.  The pendulum experiment clearly showed that 
the low-cost accelerometers produced similar acceleration magnitude data and very 
similar FFT spectra for the sampling rates we required. 

Our first, single-person, experiments with different accelerometer pairs and data 
collectors confirmed that the accelerometers performed similarly in the frequency 
range of interest.  Using these results we believe it safe to conclude that these 
inexpensive accelerometers are appropriate and well suited to the tasks of recording 
highly periodic human motion.  We also believe that they provided measurements 
which were consistent with the physical world and were not merely the artifacts 
associated with a particular accelerometer. 

Our first experiment also showed us that the coherence integral does provide a 
reasonable measure of the correlation of two acceleration magnitudes.  We were able 
to show that correlated 8-second segments showed mean coherences of 90.2% and 
that uncorrelated 8-second segments showed mean coherences of 52.3%.  This 
striking difference in coherence clearly indicates a separation between correlated and 
uncorrelated results.  The second experiment, the paired walking experiments, further 
expand these results showing that devices on the same person have mean coherences 
of 95.4%, with uncorrelated results having a mean of 52.9% while devices recorded 
on two different individuals have mean coherences of 56.9% and 53.1%, even with 
people purposely attempting to confuse the results.  The large separation between 
correlated and uncorrelated results is also clearly evident in Figures 5 and 6, clearly 
showing that we can indeed determine when sensors were worn on the same 
individual.  There were no false positive results from the sensor readings from the 
same person (recorded during different walks), people walking casual together, and 
even people purposely trying to walk in lock step together.  

8 Conclusions and Future Work 

We set out with two goals for this paper: (1) showing that inexpensive 
accelerometers are adequate for our tasks and (2) showing that we can accurately 
determine when two devices are being carried by the same person using these 
accelerometers.  We believe our experimental data strongly support positive 
conclusions in both cases.  We have also answered our original question: “How 
reliably can accelerometer data be used to make the determination that two devices 
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are on the same person?” by showing that we can reliably determine if two devices 
are being carried by the same person using just 8 seconds of walking data.  We can 
even differentiate between devices carried by two people walking together. 

As we are concerned only with the physics of human motion we are only interested 
in frequencies up to 10Hz.  This is of great advantage for small, portable, and low-
power devices as the accelerometers only need to be sampled at 20Hz to meet the 
Nyquist criterion. Low sampling rates will also help facilitate the use of wireless 
communication to offload computationally expensive portions of this algorithm to 
devices with more powerful processors and/or batteries. 

Our results for determining whether two devices are carried by the same person are 
limited to people that are walking – either independently or side-by-side and even in 
lock-step.  We use the values of frequency coherence between 0 and 10Hz to provide 
us with a rough likelihood that the two devices were being carried by the same person 
by integrating the area under the coherence curve.  The results are not only very 
positive but they are also very robust.  If we use an 8-second window for the 
comparison, our results are 100% accurate (no false positives, no false negatives).  
We feel that the most impressive result is that segments which should have high 
coherences have mean coherences in the 90 – 95% range with standard deviations on 
the order of 5 – 6% and segments that should have low coherences have means in the 
range of ~52% with standard deviations of  ~6%.  This substantial separation between 
correlated and uncorrelated signals illustrates our algorithm’s robustness and even 
holds up when people attempt to purposely walk in lock-step to fool our algorithm.   

If we narrow our data window, the results necessarily degrade, but only 
moderately.  For example, with a 5 second window, we still have ~95% accuracy, 
even at 2 seconds, it is still in the ~75% range.  This is encouraging as it is likely that 
other sensors can be used in conjunction with the accelerometers (e.g., microphones) 
to use additional data to make the determination. 

The major limitations of our current approach is that we are requiring the user(s) to 
walk and that we only considered devices in a fanny pack.  We have yet to 
extensively study the cases of other everyday motions.  For example, sitting and 
typing at a desk, will likely require more analysis in the time-domain as there is less 
periodicity in the person’s movement.  Again, we see the technique presented here as 
only one of many analysis tools available to the interaction designer.  For example, 
this method could be enhanced with additional sensor data, simple time domain 
analysis, etc.  

Preliminary experiments have been conducted with devices at other locations on 
the body, with experiments with devices on the wrist, placed in one or both pockets, 
in a back-pack, and in a fanny pack.  Figure 9 shows some preliminary experimental 
results with sensors worn in a pocket/fanny pack, pocket/backpack, and pocket/wrist.  
Table 3 lists the statistics gathered from this preliminary experiment.  While the 
results from different locations for the devices are not quite as good as when both 
devices are in the same fanny pack, they still show promise.  Coherence clearly is an 
important tool for solving the device association problem, in general.  However, it is 
also clear that it will need to be enhanced with other techniques appropriate to the 
usage model. 



       Using Accelerometers to Determine if Two Devices are Carried by the Same Person      17 

Table 3.  Stastitics from coherence analysis of three different preliminary experiments 

 Experiment  Diagonal   Off-Diagonal  Average Success Rate 
Pocket / Fanny Pack   76.7% ± 4.6%  55.3% ± 8.8%  87.5% 
Pocket / Backpack  77.1% ± 6.0%  54.9% ± 8.8%  81.3%  
Pocket / Wrist  75.7% ± 6.5%  51.9% ± 6.9%  70% 

 

 
Fig. 9. Data from three different experiments using sensors worn on different parts of the body, 
Pocket/Fanny Pack, Backpack/Pocket, and Wrist/Pocket 

Our future plans are to incorporate these methods and others into a general purpose 
sensor platform that can be easily integrated with a variety of devices such as cell-
phones, key-chains, digital cameras, and wrist-watches, as well as PDAs, tablets, and 
laptops.  We are currently designing a new sensor board with accelerometers, 
microphones, light, and inertial sensors that will fit into a package roughly 2.8 cm2.  
We will be using an embedded ARM7 processor that will be able to handle the 
computations easily along with Bluetooth RF communication. 

When this new sensor platform is complete, we will also conduct user studies for 
typical use in two scenarios: borrowable cameras that can keep track of what other 
devices (and what person) they were being carried by when each picture was taken, 
and automatic synchronization of data between PDAs, laptops, and wrist-watches. 
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