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1 Towards a societal scale sensor network

While industry analysts predict that cell phones will
become the “next PC,” we believe that the cell phone has
the power to become something much more than a scaled
down, connected IO and processing device. In addition
to these standard PC traits, a cell phone is situated in
an environment, mobile, and typically co-located with
a user. These traits make the cell-phone ideally suited
to track and understand the impact that the environment
has on individuals, communities, cities and on a global
scale, as well as understanding how humans effect their
environment.

By attaching sensors to GPS-enabled cell phones, we
can gather the raw data necessary to begin understand how,
for example, urban air pollution impacts both individuals
and communities. While integrating a sensor into a phone
and transmitting the data that it gathers to a database is
not very difficult, doing so at low cost, on a societal scale,
with millions of phones of phones providing a data from
hundreds of networks spread throughout the world makes
the problem much more tricky.

On top of the systems challenges, understanding the
raw data gathered from a network of cell phone-attached
sensors presents significant challenges as well. Cell phone
users are mobile, are unlikely to ever explicitly calibrate
their sensors, typically put their phone in their pocket
or handbag (thus obstructing the sensor from airflow),
spend significant time indoors or in cars, and typically
charge their phone at most once per day, often much less
frequently. Even if users did calibrate their sensors, the
very low-cost sensors we intend to use drift over time and
environmental conditions anyway. Without knowing the
location of a sensing event, automatically calibrating the
sensors in the phone, detecting the environment of the
phone, and intelligently managing power (by sampling at
the right times) the data gathered by the phones will be
next to useless.

Thus the N-SMARTS project focuses on:

e Developing a platform to understand the real-world
challenges of sensing on a mobile phone, and to
provide other researchers, both within and outside
of computer science, with a platform for their own
experiments. ( What do the sensor data look like?
What are people’s movement patterns? How do
people’s behaviors impact the data? How can the
impact of those behaviors be minimized by platform

Figure 1: CO data collected from sensors in taxi cabs
in Accra, Ghana on March 21st, 2007, overlaid on
aerial photography using Google Earth.

design? )

o Building a system architecture that can scale to mil-
lions of phones (What are the system bottlenecks?
How can communication costs be minimized? How
much computation should occur on the phone?)

e Designing algorithms to scalably provide accurate
estimates of pollution levels and other sensed
data (How can accuracy be increased by super-
sampling? How can the phones be automatically
calibrated to one another, or other sensors in
the environment? How can those inferences be
parallelized?)

e Designing algorithms to detect and account for the
user’s behaviors (Can we accurately detect when
the phone is a user’s pocket or purse, when the user
is in a car, indoors, outdoors, etc.? Can we correct
our readings? Can we accurately label data with
the user’s context, so that we can answer questions
like “What is the median exposure to CO for bicycle
commuters on Shattuck Avenue?”)

e Assembling and building a suite of useful sensors
to integrate.



Figure 2: The automotive and personal version of the
data-logging sensor platform
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Figure 3: A prototype of the Bluetooth board with
a CO sensor, a NOx/CO dual sensor, a temperature
sensor and an accelerometer. This board will integrate
directly with the phone.

Figure 4: The battery of a LG VX9800 with a PCB
mounted on top and covered by a new enclosure
(outline shown for the new enclosure only).

2 NSMARTS platforms

Because we don’t have a clear picture of what the
pollution data and movement patters of users will be, we
need to gather data up front, before we have an integrated
sensor/phone platform available. For that reason, we have
put together a portable sensor platform which can be
carried around, allowing a person to gather data that is
roughly similar to the data which will be gathered by the
integrated platform. The data acquisition platform will
allow us to develop and test the algorithms that make up
the core of the N-SMART platform.

The data acquisition platform consists of off-the-shelf
pollution sensors, and a GPS. Each unit contains

e A Lascar EL-USB-CO Carbon Monoxide data
logger

e A Garmin Qwest GPS (with external antenna)

e ANO2, SO2 or O3 datalogger from BW Technolo-
gies

All of the devices log data, and their clocks are
synchronized so that the data from each device can be
correlated. See our web page for details on the sensors
(see Section 7).

There are two version of this kit: a “automotive
platform” which can be mounted near a car window or
externally, and a “personal platform” which can be worn
on a user’s belt (see Figure 2).

We deployed six automotive platforms on taxis and four
personal platforms on students in Accra, Ghana, West
Africa, for two weeks in March, 2007. These data were
uploaded into a database and can be viewed in a variety
of formats, including an overlay on Google Earth (see
Figure 1). The database will be publicly available soon.

We are also developing an integrated platform which
will more closely approximate a phone manufactured
with sensors integrated directly into the phone itself.
This model will allow significant cost reduction with
respect to less complete integrations. Rather than actually
manufacturing a new phone and enclosure, however, we
simply replace the battery pack of the phone with a
module that clips in to the battery well of the phone,
and contains both a battery and the sensor module (see
Figure 4).

The current version of the integrated platform has:

e CO and NOx sensors
e A temperature sensor for calibration
e An accelerometer for activity inferencing

e A Bluetooth radio for communication with the
phone
We chose to use Bluetooth to communicate with the phone

to avoid mechanical problems with a direct serial link, and
to make the design and software more generic.



3 Exploiting mobility

One of the main advantages N-SMARTS has over many
other sensor networks is that the sensors are mobile, and
are co-located with people. Not only does this mean that
we will tend to have data in locations that are relevant to
people, but it also means that sensors will tend to have
spacio-temporal density similar to people. We can take
advantage of this density in at least two interesting ways.

First, as the density of sensors at a given location in-
creases, we can increase our precision by super-sampling,
and averaging. For sensors with Gaussian noise (which
our CO sensors exhibit) sampling in the same location,
we expect the variance of the signal to be % if we average
the signals from n sensors with noise variance C. In
Figure 5, we a experiment with six sensors in a chamber
in which we can control the concentration of CO. In this
case, we stepped the concentration of CO by 0.2ppm
increments over an hour, and observed the response of
the sensors. The light dots show the response of one
sensor, and the dark dots show the averaged response
of six sensors. Clearly the noise variance has decreased.
Figure 6 show the variance of the signal versus the number
of sensors averaged. The empirical results match the
theoretical results closely!

In the real world, of course, sensors will not be located
exactly in the same place at the same time. Theoretical
results on the learning curves of Gaussian processes
suggest, however, that if sensors are in proximity to one
another signals from the sensors can be “averaged” using
a Gaussian process, with the increase in precision related
to both the number of sensors and their density in space-
time.

Another interesting way in which we can exploit
mobility is by calibrating the sensors when they are in
close proximity to one another, or to an accurate reference
sensor situated in the environment. A Gaussian process
model can easily accommodate this type of inference. In
Figure 7, we can see a signal sampled by two different
sensors, one represented by circles, the other by triangles.
Each sensor has a bias with respect to the signal, and
noisy samples are taken from the signal using a Gaussian
noise function. The sensors never sample in the same
location, but the samples in the middle of the graph are in
close proximity to one another. If we smooth the samples
without considering the bias of each sensor, then we get
significant error in locations that are not sampled by both
sensors. If, however, model the bias, then the smoothed
function closely tracks the underlying value.
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Figure 5: Sensor readings of concentration of
CO(ppm) vs. time. Concentration is changed in
0.2ppm steps by a mass flow controller. The lighter
dots represent readings from a single sensor. The
darker dots represent the average of six sensors.
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Figure 6: Variance of the average signal from a set of
sensors (in ppm) vs. the number of sensors in the set.
¢ is show for reference.

n

—— Inferred function

— True Value

- - Without calibration

2 La 4
Y

Figure 7: A simple example in which two sensors
(represented by circles and triangles) each have some
bias. Although the readings from each sensor are
taken in different places, our model can infer the bias
from each sensor and correct for it.
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Figure 8: PMZ2.5 particles are deposited on a
resonating FBAR via thermal phoresis, changing the
resonance frequency of the FBAR.

4 Advanced Sensing

Since aerosol pollutant’s constitute a major public health
concern, causing an estimated 65,000 deaths annually
in the United States, the N-SMARTS project is working
to integrate a MEMS PM2.5 mass sensor developed at
LBNL and Berkeley into our design. This design uses
thermophoretic precipitation of particles onto the mass
monitor, a thin-film bulk acoustic wave resonator (FBAR)
/ Pierce oscillator (See Figure 8. Our version uses an
inertial impaction filter to select aerosol pollutants less
than 2.5 microns in size.

This work was featured independently as part of the
BSAC Advisory Board Meeting.
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e Dr. Justin Black - Berkeley EE

e Alex Elium - Berkeley EE
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6 Future Directions

We’ve left security entirely out of this discussion, and that
will be a serious concern, since users will be divulging
private information about their location and context. We
have some ideas about how to ensure users’ privacy while
still transmitting useful information to the database(s).
We are seeking collaborators in this area!

Another area which we intend to persue is plume
detection and warning. Users could be warned of a
plume nearby and guided away from it. This has some
very interesting public safety and emergency and disaster
response applications.

7 Resources and further information

1. The N-SMARTS home page:
http://www.cs.berkeley.edu/honicky/nsmarts

2. Participatory Urbanism at Intel Research:

http://www.urban-atmospheres.net/ParticipatoryUrbanism/

index.html

3. A tech report on the algorithms for automatic
calibration (UC Berkeley EECS Tech Report EECS-
2007-34):

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-

2007-34.pdf

4. Justin Black’s dissertation on FBAR-based particle
measurement (UC Berkeley EECS Tech Report
EECS-2006-193):

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-

2006-193.pdf



