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ABSTRACT 
Remote patient monitoring generates much more data than health-
care professionals are able to manually interpret. Automated 
detection of events of interest is therefore critical so that these 
points in the data can be marked for later review. However, for 
some important chronic health conditions, such as pain and 
depression, automated detection is only partially achievable. To 
assist with this problem we developed HealthSense, a framework 
for real-time tagging of health-related sensor data. HealthSense 
transmits sensor data from the patient to a server for analysis via 
machine learning techniques. The system uses patient input to 
assist with classification of interesting events (e.g., pain or 
itching). Due to variations between patients, sensors, and 
condition types, we presume that our initial classification is 
imperfect and accommodate this by incorporating user feedback 
into the machine learning process. This is done by occasionally 
asking the patient whether they are experiencing the condition 
being monitored. Their response is used to confirm or reject the 
classification made by the server and continually improve the 
accuracy of the classifier’s decisions on what data is of interest to 
the health-care provider.  

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing – indexing methods, J.3 [Life and Medical 
Sciences]: Health, Medical information systems.  

General Terms 
Management, Measurement, Design, Experimentation. 

Keywords 
Healthcare, sensor data analysis, indexing. 

1. INTRODUCTION 
Recent evidence suggests that remote health monitoring is on the 
cusp of achieving widespread adoption. Low cost sensors, 
increased wireless broadband penetration, surging medical 

expenses and growing demand for tether-less medical solutions 
are resulting in monitoring scenarios that previously were only 
discussed in research publications. Example remote health 
monitoring scenarios include applying pulse oximeters to monitor 
blood oxygen levels, using glucometers for diabetic patients and 
detecting cardiac events with portable EKG monitors [2-3,17]. 
There are networked weight sensors for detecting weight loss and 
gain, portable EEG sensors for monitoring epilepsy and EMG 
sensors for detecting muscle dynamics. Additional sensors are on 
the horizon for application to a wide variety of conditions and 
will change the relationship between health-care provider and 
patient. 
 
Even as new sensors are being developed, there are certain 
medical conditions for which automated detection is not feasible. 
In such cases, either there is no known way to directly detect the 
corresponding physiological condition or such detection is 
impractical from a cost or usability perspective. We refer to this 
category of health-care conditions as being directly undetectable. 
Two important conditions, pain and depression, fall in this 
category, and are both expected to have a growing impact on 
society as they are often associated with rising chronic health 
conditions. Chronic pain is correlated to increasing rates of 
obesity and by 2030 an estimated 67 million Americans are 
expected to suffer from doctor-diagnosed arthritis [14]. 
Depression often occurs when patients become aware of their own 
chronic health conditions; 15-25% of cancer patients suffer from 
depression once cancer has been discovered [12]. A recent WHO 
study found that 23% of patients with two or more chronic health 
conditions also suffered from depression [13]. 
 
Given the significance of the above statistics, we believe there is 
value in extending remote health monitoring techniques to 
accommodate directly undetectable conditions in the absence of 
direct sensing technology. We believe that biophysical contextual 
data collected from a patient suffering from a directly 
undetectable health condition may be correlated to events 
associated with the health condition based on patient feedback. 
Our approach is to hypothesize an initial model and collect data 
that we believe is loosely associated with the condition events of 
interest. As data is collected, we automatically detect condition 
events while recognizing that our decisions may be inaccurate due 
to imperfections in the initial model. Upon the occurrence of such 
events, we query the patient in near real-time to determine if our 
understanding of the existence of an event is consistent with the 
patient's own psychological awareness of the event. In so doing, 
we use machine learning to reinforce our understanding of the 
condition events and improve our model. 
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To illustrate our approach, we introduce the HealthSense 
framework for monitoring directly undetectable health conditions. 
The key design challenge and novelty of HealthSense is to 
integrate near real-time patient feedback in a machine learning 
loop involving a patient’s own health data. As data is collected 
the system must quickly determine if the automated 
understanding of an event is consistent with the patient's 
awareness of the event. As will be discussed in Section II, this 
challenge distinguishes this work from other research on activity 
modeling and remote health monitoring. HealthSense consists of 
wearable sensors for collecting biophysical context, a patient-
worn mobile hub for forwarding sensed data and collecting 
patient feedback and a server for processing sensed data and 
detecting events of interest. The HealthSense design is 
lightweight both as a client and server and emphasis is placed on 
ease of use over real-time processing. Standard machine learning 
algorithms are leveraged and patient feedback involves a simple 
yes/no question to minimize interruption of the patient's normal 
activities.  
 
While the intended goal of HealthSense is detection of directly 
unobservable conditions such as pain and depression, organizing a 
study with patients experiencing either of these symptoms proved 
to be infeasible for this preliminary work. Instead, to test our 
approach we chose to monitor the readily available condition of 
itching. While obviously not a direct proxy for pain or depression, 
itching is not directly observable by any sensor and thus met our 
primary requirement. From a medical perspective, detection of 
itching has potential usefulness with respect to eczema (a 
condition that impacts 15 million Americans) as well as important 
childhood diseases such as chickenpox (in which it scratching is 
not advised) [15]. We thus set out to determine whether the 
HealthSense system could identify the action of a patient 
scratching.  
 
In the remainder of this paper we present HealthSense along with 
results of our preliminary study involving itching.  The paper is 
organized as follows. In Section II we present related work on 
remote health monitoring as well as activity detection. In Section 
III we present an architectural overview of HealthSense with a 
discussion of our design choices. In Section IV we discuss our use 
case and present preliminary results from a small user study. We 
discuss future directions and conclude the paper in Section V. 
 

2. BACKGROUND 
A large body of previous work exists in the space of remote 
health monitoring; however, to our knowledge, the problem of 
detecting directly undetectable health-related events has not been 
explored. Previous work has focused largely on real-time anomaly 
detection based on well-defined and pre-existing models [1-3,6]. 
An oft cited example is that of real-time detection of an irregular 
heart rhythm using an EKG sensor [3,6]. In contrast to the 
conditions monitored by HealthSense, an irregular heart rhythm is 
directly observable from EKG sensor data. Simple, well-known 
processing methods such as a peak-detector can be used to extract 
this information from the signal. Blount et al. go a bit further with 
their ability to detect anomalies based not only on well-known 
models, but also the patient's historical sensor readings [3]. 

 
Management of the large amounts of data accumulated through 
remote monitoring has been another common theme in the 
research. Extracting meaningful information from the various 
types of sensors a patient may be outfitted with and presenting 
this information in a format suitable for physicians, as well as the 
patient, is a non-trivial task. Cárdenas et al. explore the problem 
of data visualization for a patient outfitted with a variety of sensor 
types [4]. The patient's electronic diary is also correlated to their 
sensor readings. 
 
In attempting to detect directly undetectable conditions, 
HealthSense also touches on the areas of activity and gesture 
recognition from on-body sensors. Although most previous work 
in this space has not been related to detecting a specific medical 
condition, HealthSense shares the goal of detecting a high-level, 
directly undetectable event from low-level sensor streams [8]. 
Westeyn et al.'s work on the detection of self-stimulatory 
behavior in individuals with autism using on-body accelerometers 
comes close to our goals for HealthSense, although they do not 
mention updating the system with online learning after 
deployment [11]. Feature extraction and selection is critical for 
applications involving machine learning and has been examined 
extensively in the activity recognition research. Lester et al. 
presented work in which a large number of features (over 600) 
were extracted for detecting physical activities such as walking, 
driving, sitting and standing [8,9]. Their work was valuable in 
prioritizing which features were most important for classification, 
but they did not consider scenarios in which training is 
insufficient and in situ feedback is required.  
 
To acquire in situ feedback, HealthSense must query the patient 
regarding the accuracy of its decisions. Intille et al. describe the 
Experience Sampling Method for querying users on their current 
state periodically via a PDA [7,10]. Although they appear to use 
this data for subsequent off-line supervised learning, they do 
suggest that online learning is possible and desirable. HealthSense 
shares with this work the method of sampling data from the user, 
although rather than doing so periodically, we attempt to reduce 
the frequency of interruption using initial supervised learning and 
subsequent polling when the system believes it has observed the 
condition of interest. The MyExperience project is another work 
involving collection of smart-phone-based user feedback [5]. 
However, feedback is not used as part of a machine learning loop 
and is closer to the format of a small survey than the Boolean 
questions that HealthSense poses to the patient. 
 

3. THE DESIGN OF HEALTHSENSE 
The HealthSense framework consists of three tiers. The sensor tier 
is the simplest of the three and consists of wearable, wireless 
sensors that send data to the mobile hub. In this paper we focus on 
triaxial accelerometers (as our use case in Section IV discusses), 
although our system accommodates arbitrary sensor types. We 
experimented with two types of accelerometers: Bluetooth-based 
Witilt accelerometers and Zigbee-based SunSpots. Since our 
mobile hub supported Bluetooth links, the Witilt accelerometers 
were preferred as they could communicate directly to the mobile 
hub. The SunSpots on the other hand required a wearable SunSpot 
basestation connected to the mobile hub’s USB port. We 
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configured the sensors to deliver data at a sampling rate of 60Hz. 
Although the system is capable of much higher sampling rates, we 
found 60 Hz to be more than sufficient given the time domain 
characteristics we chose to monitor and the frequency domain 
analysis we performed. 
 
A Nokia N800 PDA serves as our mobile hub (we also used the 
previous version – the Nokia 770). The Nokia is a good choice 
because it supports several communication protocols (Bluetooth, 
802.11, USB) in a small form factor and has an open architecture 
running Linux. The mobile hub provides store and forward 
capabilities for the sensor data with a minimal amount of data 
processing. The sampled data arriving from the sensors consists of 
a vector value and a sequence number. Assuming constant rate 
sampling by the sensors, we could optionally treat the sequence 
number as a time stamp. Nevertheless, we chose to establish a 
global sensor clock with the mobile hub and synchronize the 
sensors by adding time stamps upon data arrival. As data is 
received from a particular sensor, the time stamps are added and 
samples are organized into an envelope (an event window) 
indicating their data type, the sensor ID, and an interval value. 
The interval value plays the role of a packet number and increases 
by one for each successive event window for a given sensor. We 
configured each event window to consist of 128 samples of data. 
In addition, the mobile hub formats raw sensor data as 
appropriate. In the case of accelerometer data, it converts raw 
values into gravitational values. Event windows are then sent to 
the server as XML.   

Figure 2. WiTilt accelerometer in case and case 
configured with wrist-strap compared to a wristwatch.   

 
The HealthSense server performs archiving, feature extraction, 
and statistical processing of the data it receives. The server is 
based on Apache Tomcat, embedded Apache Derby and Weka. 
HealthSense uses a servlet model for receiving data and all 
received data is stored in the Derby database. Data can be 
extracted from the database for playback and HealthSense is 
augmented with the Ptolemy PtPlot utility for displaying signal 
traces for review by the user [16]. Upon receiving data, features 
are extracted using utilities we wrote in Java. We extract several 
features from the data received including the mean, standard 
deviation, product-moment correlation, and frequency domain 
energy.  
 
Once features have been calculated for a given event window, 
they are prepared for processing by the Weka engine. Weka is a 
Java-based machine learning utility that we embedded into our 
server. For each event window, a Weka Instance consisting of the 

calculated features is classified using a given Weka classification 
engine. The classification is based on training performed with 
features extracted from previously collected data. We assume that 
our classifier classifies received data into one of two categories 
representing the occurrence or non-occurrence of a directly 
undetectable condition. When positive classification occurs (e.g., 
when the classifier declares that a condition event of interest did 
occur), the HealthSense server queries the user to determine if the 
user agrees that the event occurred.  The user is not queried after 
negative classifications.  
 
The user query process involves the server sending a short 
message to the mobile hub consisting of the event window 
interval associated with the classification. Reception of such a 
message by the mobile hub causes a GUI window to pop up with 
a yes/no question asking the user if the condition event occurred 
or not. Selecting yes or no on the GUI results in a message being 
sent back to the server so that the corresponding classification 
decision can be maintained or updated. Currently the pop up 
query persists on the GUI until the user responds or a subsequent 
query is received from the server. If a subsequent query is 
received, it overrides any previous queries for which the user has 
not responded so that the user response applies to the latest query 
received. In a future design, we will likely time out user queries 
so that they vanish if a user does not respond within a maximum 
time window. This will allow us to avoid stale queries in which 
the user is forced to remember a condition that may have occurred 
long in the past.   
 
Capturing initial data for training our Weka classifiers was a 
tedious process. The primary challenge was in labeling our data 
based on manual classification in preparation for automated 
classification. Such labeling involved manually reviewing data 
signals with a plotting GUI, extracting relevant signal 
subsequences, determining features associated with the 
subsequences and then creating the Weka input files (i.e., ARFF 
files) based on the features to be used for training the classifier. 
Because of the manual review component of this process, training 
with even a small amount of data was laborious. It is our belief 
that tools for simplifying labeling and manual classification of 
arbitrary time series data would be a helpful contribution to the 
field of machine learning applied to pervasive computing.  
 

Figure 1. WiTilt Tri-Axial Bluetooth Accelerometer. 
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4. USE CASE: DETECING AN ITCH 
To test HealthSense, we focused our attention on the condition of 
itching. Most people respond to an itching sensation by scratching 
the region that itches, so our goal was to detect the occurrence of 
scratching. Itching can occur both as an acute medical condition 
(e.g., eczema or chickenpox) as well as a routine incident (e.g., 
scratching in response to an insect bite or the sensation caused by 
uncomfortable clothing). Our challenge was to differentiate 
medically relevant scratches (e.g., scratches at a location where 
the patient is experiencing an eczema outbreak) from routine daily 
scratching. Assuming the patient scratches both types of itches 
with a similar motion, this obviously requires a priori knowledge 
of the locations of medically relevant scratches. 
 
The first decision we faced in applying HealthSense to scratch 
detection was determining the appropriate type of sensor for 
detecting a scratch. Accelerometers seemed a natural choice since 
a patient’s response to experiencing an itch involves the motion of 
scratching. Thus, using two wrist-mounted tri-axial 
accelerometers (one per hand) we collected data from six users 
over a period of approximately twenty minutes per user and noted 
the times during which each user scratched. The noted segments 
were then manually extracted from the data, along with additional 
segments not representing a scratch, to provide HealthSense with 
initial training. Visual inspection of the accelerometer data gave 
us confidence that a scratch had identifiable characteristics that 
could be automatically detected.  
 
After extracting windows of the appropriate size from the raw 
time-series data, various features were calculated. These included 
the frequency-domain energy of the signal in 1 Hz increments 
between 0 and 10 Hz, the correlation between the three 
accelerometer axes, the standard deviation of the time domain for 
each axis, and the RMS of each time-series axis. We found 
approximately 2.13 seconds of data sampled at 60 Hz (128 
samples) to be sufficient for detecting scratching with a tri-axial 
accelerometer. The choice of window size over which to extract 
the desired features from the raw sensor data is an important 
consideration and will likely change with different types of 
sensors and different applications. Note that lengthening the 
window size lengthens the decision period of the system, and thus 
the amount of time before the system can query the patient for 
confirmation if necessary.  
 
To get an idea of the potential classification accuracy of the 
system, we fed our data into the Weka machine learning toolkit 
and explored various classifiers commonly found in the activity 
recognition literature such as the C4.5 decision tree, naïve Bayes 
classifier, and the multilayer perceptron neural network. Using 
leave-one-out analysis of the data, we found that scratches could 
be identified with accuracy between 87% (naïve Bayes) and 91% 
(C4.5 decision tree). These results confirmed the feasibility of 
detecting scratching with a tri-axial accelerometer, the features we 
calculated, and the selected classifiers.  
 
With the system now somewhat trained from this supervised 
learning procedure, we set out to quantify any improvement in 
classification accuracy afforded by the user-query feedback 
mechanism. As ground truth, we ran the system using only the 
initial training data for several minutes and observed the 

accuracy. The test was conducted while seated at a desk and 
performing standard activities for this setting such as using a 
mouse and keyboard. As would be expected, accuracy remained 
fairly constant throughout the test, ranging from 63% to 73% in 
each minute. Note that the classifier always has a binary output – 
either we observe the condition of interest or not. Next we ran the 
same test without scratching, however this time we used the 
user’s feedback to update the classifiers after each decision was 
made. This time the accuracy in each minute rose from 62% in the 
first minute to a maximum of 93% in the third minute. This not 
only demonstrates the value of user feedback, but also how 
quickly the system can be made to improve upon its initial 
training. In a third test we incorporated scratching at a rate of 
once per minute in a random location. The scratch was always 
correctly identified and similar accuracies to the last test were 
observed. The first minute showed 62% accuracy and a maximum 
of 93% accuracy was obtained in the third minute. Finally, we set 
out to determine the system’s performance in determining 
scratches at a particular location. Eczema patients, for example, 
do not necessarily experience eczema everywhere on their body 
and thus the system should be able to differentiate normal daily 
scratching from scratching at the site of the eczema. We tested 
whether the system could differentiate a scratch to the back of the 
neck versus elsewhere on the body. With training, the system 
improved in accuracy from 81% to a maximum of 100% in the 
third minute. It was clear during the course of testing that when 
scratching elsewhere the system would initially make an incorrect 
decision and identify that action as the condition of interest. 
However, with several responses from the user indicating the 
decision was incorrect, the system could then rule out that 
location at near 100% accuracy. All above results were obtained 
using a C4.5 decision tree. Initially we attempted to use a neural 
network as the classifier, however retraining it with each 
incoming sample proved to be too processor intensive for the 
system to operate in real-time. 

5. FUTURE DIRECTIONS 
The work presented in this paper serves as an initial indication of 
the usefulness of user-assisted feedback applied to data collection 
in remote health monitoring systems. As this work continues, we 
see several areas for improvement. First and foremost, we 
recognize that our feature pool can be expanded significantly. In 
general, it will not be known a priori which features are most 
useful. Nevertheless, the availability of a large number of features 
can be automatically pruned and prioritized based on the user 
feedback as certain features are discovered to be more important 
than others. In a similar fashion, additional sensors will likely be 
relevant depending on the condition being monitored. The issue 
of changes in orientation of the sensors while training the system 
has not yet been addressed. An additional accelerometer to 
indicate whether the patient is sitting or standing could be used as 
another feature for the classifier and may improve accuracy. 
Some of the additional sensors may not necessarily be worn on 
the patient’s body and may involve contextual data about the 
patient’s surroundings. For example, the presence of antagonistic 
individuals may have an impact on depression. Herein lies an 
opportunity for HealthSense: the ability to discover important 
correlations that otherwise would be difficult to detect.  
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A disadvantage of our current approach to receiving user 
feedback is that we reinforce our model against positive 
classifications but we do not account for the occurrence of 
negative classifications. In effect, we do not appropriately handle 
false negatives (i.e., if HealthSense fails to detect a scratch). One 
way to handle this is to allow the patient to voluntarily notify 
HealthSense when a scratch occurs that HealthSense fails to 
detect. The challenge in patient initiated declarations is that 
timing becomes critical since a patient’s declaration must be 
precisely aligned with the data it corresponds to. An improved 
approach is for HealthSense to query the patient for validation of 
both positively and negatively classified results. Alignment is no 
longer an issue in this case since the query will be associated to a 
particular event window, assuming that the query rate is relatively 
slow (e.g., a patient-noticeable delay should occur between 
successive positive and negative queries). Unfortunately, queries 
about both positive and negative classifications risk the possibility 
of overwhelming the patient since every event window will 
contain either a positive or negative classification. Gauging the 
frequency with which it is appropriate to interrupt the user for 
feedback is actually an interesting problem in itself. 
 
In this paper we presented HealthSense, a framework for 
automated detection of health-related events that can not be 
directly observed by any current sensor. HealthSense assumes that 
the occurrence of these conditions is correlated with events that 
can be observed. This correlation may not be obvious though, and 
thus we occasionally require feedback from the patient to validate 
the system’s decisions. Although in this preliminary work we 
examined scratching, we believe this system’s real promise lies in 
detecting conditions such as pain and depression. The system is 
designed to be flexible though, and can accommodate any type of 
condition and all varieties of sensors.  

6. REFERENCES 
 
[1] D. Apiletti, E. Baralis, G. Bruno, and T. Cerquitelli, 

“SAPhyRA: Stream Analysis for Physiological Risk 
Assessment,” Twentieth IEEE International Symposium on 
Computer-Based Medical Systems, pp. 193 – 198, 2007. 

 
[2] M. Blount, V. M. Batra, A. N. Capella, M. R. Ebling, W. F. 

Jerome, S. M. Martin, M. Nidd, M. R. Niemi, and S. P. 
Wright, Remote health-care monitoring using Personal Care 
Connect, IBM Systems Journal, Volume 46, Number 1, 2007. 

 
[3] M. Blount, J. Davis, M. Ebling, J. Kim, K. Kim, K. Lee, A. 

Misra, S. Park, D. Sow, Y. Tak, .M. Wang, and K. Witting, 
“Century: Automated Aspects of Patient Care,” Proceedings 
of the 13th IEEE International Conference on Embedded and 
Real-Time Computing Systems and Applications, pp. 21 - 24, 
Daegu, Korea, 2007. 

 
[4] A. Cárdenas, R. Pon, and R. Cameron, “Management of 

Streaming Body Sensor Data for Medical Information 
Systems,” Proceedings of  METMBS 2003, Las Vegas, NV, 
pp. 186-191, 2003. 

 
[5] Froehlich, M. Chen, S. Consolvo, B. Harrison, & J. Landay, 

"MyExperience: A System for In Situ Tracing and Capturing 
of User Feedback on Mobile Phones," Proceedings of 
MobiSys 2007, San Juan, Puerto Rico, June 11-14, 2007. 

 
[6] S. Intille, L. Bao, E. Tapia, and J. Rondoni, “Acquiring In Situ 

Training Data for Context-Aware Ubiquitous Computing 
Applications,” Proceedings of the SIGCHI conference on 
Human Factors in Computing Systems, pp 1 - 8, Vienna, 
Austria, 2004. 

 
[7] S. Intille, J. Rondoni, C. Kukla, I. Ancona, and L. Bao, “A 

Context-Aware Experience Sampling Tool,” Proceedings of 
the SIGCHI conference on Human Factors in Computing 
Systems, pp 972 - 973, Ft. Lauderdale, Florida, 2003. 

 
[8] J. Lester, T. Choudhury and B. Borriello, “A Practical 

Approach to Recognizing Physical Activities,” Pervasive 
2006, LNCS 3968, pp. 1 - 16, 2006.  

 
[9] J. Lester, T. Choudhury, N. Kern, G. Borriello and B. 

Hannaford, “A Hybrid Discriminative/Generative Approach 
for Modeling Human Activities,” Proceedings of the 
Nineteenth International Joint Conference on Artificial 
Intelligence, pp. 766 - 722, Edinburgh, Scotland, 2005. 

 
[10] E. Tapia, S. Intille, and K. Larson, “Activity Recognition in 

the Home Using Simple and Ubiquitous Sensors,” Pervasive 
2004, LNCS 3001, pp. 158 – 175, 2004. 

 
[11] T. Westeyn, K. Vadas, X. Bian, T. Starner, and G. Abowd, 

“Recognizing Mimicked Autistic Self-Stimulatory Behaviors 
Using HMMs,” Proceedings of the Ninth IEEE International 
Symposium on Wearable Computers, pp. 165 - 167, 2005. 

 
[12] http://www.cancer.gov/cancertopics/pdq/supportivecare 
 
[13] http://www.medpagetoday.com/Psychiatry/Depression-

/tb/6617 
 
[14] http://www.cdc.gov/arthritis/data_statistics  
 
[15] http://www.wrongdiagnosis.com/e/eczema/stats.htm 
 
[16] http://ptolemy.berkeley.edu/java/ptplot/ 
 
[17] http://www.bodymedia.com

 

5




